메뉴 건너뛰기




Volumn 32, Issue 5, 1984, Pages 491-498

Transient Analysis of a Stripline Having a Corner in Three-Dimensional Space

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRIC NETWORKS - EQUIVALENT CIRCUITS; ELECTROMAGNETIC FIELDS - TRANSIENTS;

EID: 0021424926     PISSN: 00189480     EISSN: 15579670     Source Type: Journal    
DOI: 10.1109/TMTT.1984.1132712     Document Type: Article
Times cited : (53)

References (11)
  • 1
    • 0004519087 scopus 로고
    • Transient analysis of two-dimensional Maxwell’s equations by Bergeron’s method
    • N. Yoshida, I. Fukai, and J. Fukuoka, “Transient analysis of two-dimensional Maxwell’s equations by Bergeron’s method,” Trans. IECE Japan, vol. J62-B, pp. 511–518, Jun. 1979.
    • (1979) Trans. IECE Japan , vol.J62-B , pp. 511-518
    • Yoshida, N.1    Fukai, I.2    Fukuoka, J.3
  • 2
    • 0008652729 scopus 로고
    • Transient analysis of three-dimensional electromagnetic fields by nodal equations
    • “Transient analysis of three-dimensional electromagnetic fields by nodal equations,” Trans. IECE Japan, vol. J63-B, pp. 876–883, Sept. 1980.
    • (1980) Trans. IECE Japan , vol.J63-B , pp. 876-883
  • 3
    • 0003824164 scopus 로고
    • Transmission Lines with Pulse Excitation
    • New York: Academic Press
    • G. Metzger and J-P. Vabre,. New York: Academic Press, 1969, pp. 65–96
    • (1969) , pp. 65-96
    • Metzger, G.1    Vabre, J.-P.2
  • 4
    • 0016645257 scopus 로고
    • Solution of Maxwell’s equations in three space dimensions and time by the t.l.m. method of numerical analysis
    • S. Akhtarzad and P. B. Johns, “Solution of Maxwell’s equations in three space dimensions and time by the t.l.m. method of numerical analysis,” Proc. IEE, vol. 122, pp. 1344–1348, Dec. 1975.
    • (1975) Proc. IEE , vol.122 , pp. 1344-1348
    • Akhtarzad, S.1    Johns, P.B.2
  • 5
    • 0016079608 scopus 로고
    • Computation of electromagnetic transients
    • H. W. Dommel and W. S. Meyer, “Computation of electromagnetic transients,” Proc. IEEE, vol. 62, pp. 983–993, July 1974.
    • (1974) Proc. IEEE , vol.62 , pp. 983-993
    • Dommel, H.W.1    Meyer, W.S.2
  • 6
    • 0016593277 scopus 로고
    • Generalized elements for TLM method of numerical analysis
    • S. Akhtarzad and P. B. Johns, “Generalized elements for TLM method of numerical analysis,” Proc. IEE, vol. 122, pp. 1349–1352, Dec. 1975.
    • (1975) Proc. IEE , vol.122 , pp. 1349-1352
    • Akhtarzad, S.1    Johns, P.B.2
  • 7
    • 0018922516 scopus 로고
    • Use of the transmission-line modelling (t.l.m.) method to solve non-linear lumped networks
    • P. B. Johns and M. O’Brien, “Use of the transmission-line modelling (t.l.m.) method to solve non-linear lumped networks,” Radio Electron. Eng., vol. 50, pp. 59–70, Jan./Feb. 1980.
    • (1980) Radio Electron. Eng. , vol.50 , pp. 59-70
    • Johns, P.B.1    O’Brien, M.2
  • 8
    • 84915282326 scopus 로고
    • Application of Bergeron’s method to anisotropic media
    • N. Yoshida, I. Fukai, and J. Fukuoka, “Application of Bergeron’s method to anisotropic media,” Trans. IECE Japan, vol. J64-B, pp. 1242–1249, Nov. 1981.
    • (1981) Trans. IECE Japan , vol.J64-B , pp. 1242-1249
    • Yoshida, N.1    Fukai, I.2    Fukuoka, J.3
  • 9
    • 0019585381 scopus 로고
    • Adaptation of Bergeron’s method to complicated boundary problems
    • “Adaptation of Bergeron’s method to complicated boundary problems,” Trans. IECE Japan, vol E64, pp. 455–462, July 1981.
    • (1981) Trans. IECE Japan , vol.E64 , pp. 455-462
  • 10
    • 0020089831 scopus 로고
    • Transient analysis of waveguide having H-corner
    • “Transient analysis of waveguide having H-corner,” Trans. IECE Japan, vol. E65, pp. 125–126, Feb. 1982.
    • (1982) Trans. IECE Japan , vol.E65 , pp. 125-126
  • 11
    • 0020702958 scopus 로고
    • Transient analysis of waveguide having tuning window
    • “Transient analysis of waveguide having tuning window,” Trans. IECE Japan, vol. E66, pp. 161–162, Feb. 1983.
    • (1983) Trans. IECE Japan , vol.E66 , pp. 161-162


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.