-
1
-
-
84904773005
-
Two models for analysing the dynamics of adaptation algorithms
-
Jan.
-
D. P. Deveritskii and A. L. Fradkov, “Two models for analysing the dynamics of adaptation algorithms, ” Automatika i Telemekhanika, no. 1, pp. 66–75, Jan. 1974.
-
(1974)
Automatika I Telemekhanika
, Issue.1
, pp. 66-75
-
-
Deveritskii, D.P.1
Fradkov, A.L.2
-
2
-
-
0021376040
-
Convergence of an adaptative linear estimation algorithm
-
Feb.
-
E. Eweda and 0. Macchi, “Convergence of an adaptative linear estimation algorithm, ” IEEE Trans. Automat. Contr., vol. AC-29, no. 2, pp. 119–127, Feb. 1984.
-
(1984)
IEEE Trans. Automat. Contr.
, vol.AC-29
, Issue.2
, pp. 119-127
-
-
Eweda, E.1
Macchi, O.2
-
3
-
-
84944481186
-
Quadratic mean and almost sure convergence of unbounded stochastic approximation algorithms with correlated observations
-
Jan.
-
—, “Quadratic mean and almost sure convergence of unbounded stochastic approximation algorithms with correlated observations, ” Ann. de l'Inst. Henri Poincaré, vol. 19, no. 1, Jan. 1983.
-
(1983)
Ann. de l'Inst. Henri Poincaré
, vol.19
, Issue.1
-
-
-
4
-
-
0003099730
-
Stochastic approximation for constrained and unconstrained systems
-
Berlin-Heidelberg-New York
-
H. Kushner and D. S. Clark, “Stochastic approximation for constrained and unconstrained systems, ” Appl. Math. Sci., vol. 26, Berlin-Heidelberg-New York, 1978.
-
(1978)
Appl. Math. Sci.
, vol.26
-
-
Kushner, H.1
Clark, D.S.2
-
5
-
-
49049152397
-
Stochastic approximation with discontinuous dynamics and state dependent noise
-
H. Kushner, “Stochastic approximation with discontinuous dynamics and state dependent noise, ” J. Math. Anal. and Appl., vol. 82, pp. 527-542, 1981.
-
(1981)
J. Math. Anal. and Appl.
, vol.82
, pp. 527-542
-
-
Kushner, H.1
-
6
-
-
0020275057
-
Convergence of stochastic approximations with state dependent noise under weak conditions
-
H. Kushner and A. Shwartz, “Convergence of stochastic approximations with state dependent noise under weak conditions, ” C. D.C. IEEE, 517–521, 1982.
-
(1982)
C. D.C. IEEE
, pp. 517-521
-
-
Kushner, H.1
Shwartz, A.2
-
7
-
-
0007298844
-
On stochastic approximation
-
E. G. Gladysev, “On stochastic approximation, ” Teor. Verojatnost. i. Primenen, vol. 10, pp. 297-300, 1965, and Theory Prob. Appl., vol. 10, pp. 275–278, 1965.
-
(1965)
Teor. Verojatnost. I. Primenen Theory Prob. Appl.
, vol.10
, pp. 297-300
-
-
Gladysev, E.G.1
-
8
-
-
0017526570
-
Analysis of recursive stochastic algorithms
-
L. Ljung, “Analysis of recursive stochastic algorithms, ” IEEE Trans. Automat. Control, vol. AC-22, no. 2, pp. 551–575, 1977.
-
(1977)
IEEE Trans. Automat. Control
, vol.AC-22
, Issue.2
, pp. 551-575
-
-
Ljung, L.1
-
9
-
-
0003680586
-
Semimartingales
-
Berlin: W. de
-
[9] M. Metivier, Semimartingales. Berlin: W. de 1982.
-
(1982)
-
-
Metivier, M.1
-
10
-
-
0346383183
-
Stochastic approximation and recursive estimation
-
Providence
-
M. B. Nevelson and R. Z. Has'minskii“Stochastic approximation and recursive estimation, ” Amer. Math. Soc., vol. 47, Providence, 1973.
-
(1973)
Amer. Math. Soc.
, vol.47
-
-
Nevelson, M.B.1
Has'minskii, R.Z.2
-
11
-
-
0039996944
-
Une classe de chaines de Markov recurrentes sur un espace metrique complet
-
C. Sunyach, “Une classe de chaines de Markov recurrentes sur un espace metrique complet, ” Ann. Inst. H. Poincare, vol. XI, no. 4, pp. 325–343, 1975.
-
(1975)
Ann. Inst. H. Poincare
, vol.11
, Issue.4
, pp. 325-343
-
-
Sunyach, C.1
-
12
-
-
0008738007
-
Stochastic approximation from ergodic sample for linear regression
-
L. Gyorfi, “Stochastic approximation from ergodic sample for linear regression, ” Z. Wahrscheinlickkeitstheorie verw. Geb., vol. 54, pp. 47–55, 1980.
-
(1980)
Z. Wahrscheinlickkeitstheorie verw. Geb.
, vol.54
, pp. 47-55
-
-
Gyorfi, L.1
-
13
-
-
0040274917
-
Learning from an ergodic training sequence. Colloquia Mathematica
-
Amsterdam, North-Holland
-
J. Fritz, “Learning from an ergodic training sequence. Colloquia Mathematica, ” in Limit Theorems of Probability Theory, P. Revesz Ed. Amsterdam, North-Holland, 1974, pp. 79–91.
-
(1974)
Limit Theorems of Probability Theory
, pp. 79-91
-
-
Fritz, J.1
Revesz, P.2
|