-
1
-
-
0017545107
-
Stable and efficient’ lattice methods for linear prediction
-
J. Makhoul, “Stable and efficient’ lattice methods for linear prediction,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25, pp. 423–428, Oct. 1977.
-
(1977)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-25
, pp. 423-428
-
-
Makhoul, J.1
-
2
-
-
0019022773
-
Spectral analysis and adaptive array super-resolution techniques
-
W. F. Gabriel, “Spectral analysis and adaptive array super-resolution techniques,” Proc. IEEE, vol. 68, pp. 654–666, June 1980.
-
(1980)
Proc. IEEE
, vol.68
, pp. 654-666
-
-
Gabriel, W.F.1
-
3
-
-
0003801873
-
Adaptive trackings of multiple sinusoids whose power levels are widely separated
-
W. S. Hodgkiss and J. A. Presley, Jr., “Adaptive trackings of multiple sinusoids whose power levels are widely separated,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, pp.710-721, June 1981.
-
(1981)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-29
, pp. 710-721
-
-
Hodgkiss, W.S.1
Presley, J.A.2
-
4
-
-
0001792571
-
Adaptive filters
-
New York : Holt, Rinehart and Winston
-
B. Widrow, “Adaptive filters,” in Aspects of Network and System Theory, R. Kalman and N. DeClaris, Eds. New York: Holt, Rinehart and Winston, 1971, pp. 563–587.
-
(1971)
Aspects of Network and System Theory
, pp. 563-587
-
-
Widrow, B.1
Kalman, R.2
Declaris, N.3
-
5
-
-
33746853468
-
Adaptive lattice methods for linear prediction
-
J. Makhoul and R. Viswanathan, “Adaptive lattice methods for linear prediction,” in Proc. Int. Conf. Acoust., Speech, Signal Processing, Apr. 1978, pp. 83–86.
-
(1978)
Proc. Int. Conf. Acoust., Speech, Signal Processing
, pp. 83-86
-
-
Makhoul, J.1
Viswanathan, R.2
-
6
-
-
85069379948
-
Sequential lattice methods for stable linear prediction
-
R. Viswanathan and J. Makhoul, “Sequential lattice methods for stable linear prediction,” in Proc. EASCON 376, pp. 155A-155H.
-
Proc. EASCON
, vol.376
, pp. 155A-155H
-
-
Viswanathan, R.1
Makhoul, J.2
-
7
-
-
0018314001
-
Adaptive structures for multiple-input noise cancelling applications
-
L. J. Griffiths, “Adaptive structures for multiple-input noise cancelling applications,” in Proc. Int. Conf. Acoust., Speech, Signal Processing, Apr. 2-4,1979, pp. 925–928.
-
(1979)
Proc. Int. Conf. Acoust., Speech Signal Processing
, pp. 925-928
-
-
Griffiths, L.J.1
-
8
-
-
0017791527
-
An adaptive lattice structure for noise-cancelling applications
-
“An adaptive lattice structure for noise-cancelling applications,” in Proc. Int. Conf. Acoust., Speech, Signal Processing, Apr. 10-12,1978, pp. 87–90.
-
(1978)
Proc. Int. Conf. Acoust., Speech, Signal Processing
, pp. 87-90
-
-
-
9
-
-
85066046069
-
A continuously-adaptive filter as a lattice structure
-
“A continuously-adaptive filter as a lattice structure,” in Proc. Int. Conf. Acoust., Speech, Signal Processing, May 13–19, 1977, pp. 683-686.
-
(1977)
Proc. Int. Conf. Acoust., Speech, Signal Processing
, pp. 683-686
-
-
-
10
-
-
0017998416
-
A class of all-zero lattice digital filters, properties and applications
-
J. Makhoul, “A class of all-zero lattice digital filters, properties and applications,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-26, pp. 304–314, Aug. 1978.
-
(1978)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-26
, pp. 304-314
-
-
Makhoul, J.1
-
12
-
-
47749116430
-
System identification and the principle of random contraction mapping
-
K. G. Oza and E. I. Jury, “System identification and the principle of random contraction mapping,” SIAM J. Contr., vol. 6, pp. 249–257, 1968.
-
(1968)
SIAM J. Contr.
, vol.6
, pp. 249-257
-
-
Oza, K.G.1
Jury, E.I.2
-
14
-
-
0004021338
-
Functional Analysis
-
Translated by New York : Ungar
-
F. Riesz and B. Sz-Nagy, Functional Analysis, Translated by F. Boron. New York: Ungar, 1955.
-
(1955)
-
-
Riesz, F.1
Sz-Nagy, B.2
Boron, F.3
-
15
-
-
0003874959
-
Linear Prediction of Speech
-
New York : Springer-Verlag
-
J. D. Markel and A. H. Gray, Linear Prediction of Speech. New York: Springer-Verlag, 1979.
-
(1979)
-
-
Markel, J.D.1
Gray, A.H.2
-
16
-
-
0016033438
-
A view of three decades of linear filtering theory
-
T. Kailath, “A view of three decades of linear filtering theory,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 146–181, Mar. 1974.
-
(1974)
IEEE Trans. Inform. Theory
, vol.IT-20
, pp. 146-181
-
-
Kailath, T.1
-
17
-
-
0003663467
-
Probability, Random Variables and Stochastic Processes
-
New York : McGraw-Hill
-
A. Papoulis, Probability, Random Variables and Stochastic Processes. New York: McGraw-Hill, 1965.
-
(1965)
-
-
Papoulis, A.1
-
18
-
-
0003517252
-
Signal Analysis
-
New York
-
A.Papoulis, Signal Analysis. New York: 1977.
-
(1977)
-
-
Papoulis, A.1
-
19
-
-
0002520451
-
Stochastic approximation: A recursive method for solving regression problems
-
New York, London England : Academic
-
J. Sakrison, “Stochastic approximation: A recursive method for solving regression problems,” in Advances in Communication Systems, A. V. Balakrishnam, Ed. New York, London, England: Academic, 1966.
-
(1966)
Advances in Communication Systems
-
-
Sakrison, J.1
Balakrishnam, A.V.2
-
20
-
-
0003670043
-
Linear Optimal Control Systems
-
New York: Wiley
-
H. Kwakernaak and R. Sivan, Linear Optimal Control Systems. New York: Wiley, 1972.
-
(1972)
-
-
Kwakernaak, H.1
Sivan, R.2
-
21
-
-
0001182011
-
Theory on the speed of convergence in adaptive equalizers for digital communication
-
G. Ungerboeck, “Theory on the speed of convergence in adaptive equalizers for digital communication,” IBM J. Res. Develop., Nov. 1972.
-
(1972)
IBM J. Res. Develop.
-
-
Ungerboeck, G.1
-
22
-
-
0016987049
-
Stationary and nonstationary learning characteristics of the LMS adaptive filter
-
B. Widrow et al., “Stationary and nonstationary learning characteristics of the LMS adaptive filter,” Proc. IEEE, vol. 64, pp. 1151–1162, 1976.
-
(1976)
Proc. IEEE
, vol.64
, pp. 1151-1162
-
-
Widrow, B.1
-
23
-
-
0019262139
-
Learning characteristics of adaptive lattice filtering algorithms
-
C. J. Gibson and S. Haykin, “Learning characteristics of adaptive lattice filtering algorithms,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 681–691, Dec. 1980.
-
(1980)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-28
, pp. 681-691
-
-
Gibson, C.J.1
Haykin, S.2
-
24
-
-
0020549926
-
Second-order convergence analysis of stochastic adaptive linear filter
-
O. Macchi and E. Eweda, “Second-order convergence analysis of stochastic adaptive linear filter,” IEEE Trans. Automat. Contr., vol. AC-28, pp. 76–85, Jan. 1983.
-
(1983)
IEEE Trans. Automat. Contr.
, vol.AC-28
, pp. 76-85
-
-
Macchi, O.1
Eweda, E.2
-
25
-
-
0017526570
-
Analysis of recursive stochastic algorithms
-
L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. Automat. Contr., vol. AC-22, pp. 551–575, Aug. 1977.
-
(1977)
IEEE Trans. Automat. Contr.
, vol.AC-22
, pp. 551-575
-
-
Ljung, L.1
-
26
-
-
0013069611
-
Convergence properties of an adaptive digital lattice filter
-
M. L. Honig and D. G. Messerschmitt, “Convergence properties of an adaptive digital lattice filter,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, pp. 642–659, June 1981.
-
(1981)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-29
, pp. 642-659
-
-
Honig, M.L.1
Messerschmitt, D.G.2
|