-
1
-
-
84956108787
-
Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem
-
V. M. Adamjan, D. Z. Arov, and M. G. Krein, “Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem,” Math. USSR Sbornik, vol. 15, pp. 31-73, 1971.
-
(1971)
Math. USSR Sbornik
, vol.15
, pp. 31-73
-
-
Adamjan, V.M.1
Arov, D.Z.2
Krein, M.G.3
-
3
-
-
0019073568
-
Chebyshev approximation of recursive digital filters
-
S. Alliney and F. Sgallari, “Chebyshev approximation of recursive digital filters,” Signal Processing, vol. 2, pp. 317-321, 1980.
-
(1980)
Signal Processing
, vol.2
, pp. 317-321
-
-
Alliney, S.1
Sgallari, F.2
-
4
-
-
84937349745
-
Design of discrete-time systems by mathematical programming
-
Honolulu, HI: Univ. Hawaii Press
-
J. A. Athanassopoulos and A. D. Waren, “Design of discrete-time systems by mathematical programming,” in Proc. 1968 Hawaii Int. Conf. Syst. Sci. Honolulu, HI: Univ. Hawaii Press, 1968, pp. 224-227.
-
(1968)
Proc. 1968 Hawaii Int. Conf. Syst. Sci.
, pp. 224-227
-
-
Athanassopoulos, J.A.1
Waren, A.D.2
-
5
-
-
0015397425
-
The differential correction algorithm for rational L8-approximation
-
Sept.
-
L. Barrodale, M. J. D. Powell, and F. D. K. Roberts, “The differential correction algorithm for rational L8-approximation,” SIAM J. Numer. Anal., vol. 9, pp. 493-504, Sept. 1972.
-
(1972)
SIAM J. Numer. Anal.
, vol.9
, pp. 493-504
-
-
Barrodale, L.1
Powell, M.J.D.2
Roberts, F.D.K.3
-
6
-
-
0016032729
-
Recursive digital filter synthesis in the time domain
-
F. Brophy and A. C. Salazar, “Recursive digital filter synthesis in the time domain,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 45-55, 1974.
-
(1974)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-22
, pp. 45-55
-
-
Brophy, F.1
Salazar, A.C.2
-
7
-
-
0014798159
-
Time domain design of recursive digital filters
-
June
-
C. S. Burrus and T. W. Parks, “Time domain design of recursive digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-18, pp. 137-141, June 1970.
-
(1970)
IEEE Trans. Audio Electroacoust.
, vol.AU-18
, pp. 137-141
-
-
Burrus, C.S.1
Parks, T.W.2
-
8
-
-
0019076888
-
High performance spectral estimation-A new ARMA method
-
Oct.
-
J. A. Cadzow, “High performance spectral estimation-A new ARMA method,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 524-529, Oct. 1980.
-
(1980)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-28
, pp. 524-529
-
-
Cadzow, J.A.1
-
9
-
-
65749321683
-
Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihrer Koeffizienten und über den Picard-Landauschen Satz.
-
C. Carathéodory and L. Fejér, “Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihrer Koeffizienten und über den Picard-Landauschen Satz.,” Rend. Circ. Mat. Palermo, vol. 32, pp. 218-239, 1911.
-
(1911)
Rend. Circ. Mat. Palermo
, vol.32
, pp. 218-239
-
-
Carathéodory, C.1
Fejér, L.2
-
10
-
-
0018456648
-
A two-sided rational approximation method for recursive digital filtering
-
C. K. Chui and A. K. Chan, “A two-sided rational approximation method for recursive digital filtering,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-27, pp. 141-145, 1979.
-
(1979)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-27
, pp. 141-145
-
-
Chui, C.K.1
Chan, A.K.2
-
11
-
-
0002271165
-
Hankel forms, Toeplitz forms and meromorphic functions
-
D. Clark, “Hankel forms, Toeplitz forms and meromorphic functions,” Trans. Amer. Math. Soc., vol. 134, pp. 109-116, 1968.
-
(1968)
Trans. Amer. Math. Soc.
, vol.134
, pp. 109-116
-
-
Clark, D.1
-
12
-
-
0015404924
-
Synthesis of recursive digital filters using the minimum p-error criterion
-
A. G. Deczky, “Synthesis of recursive digital filters using the minimum p-error criterion,” IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 257-263, 1972.
-
(1972)
IEEE Trans. Audio Electroacoust.
, vol.AU-20
, pp. 257-263
-
-
Deczky, A.G.1
-
13
-
-
0015981627
-
Equiripple and minimax (Chebyshev) approximations for recursive digital filters
-
A. G. Deczky, “Equiripple and minimax (Chebyshev) approximations for recursive digital filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 98-111, 1974.
-
(1974)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-22
, pp. 98-111
-
-
Deczky, A.G.1
-
15
-
-
0016328079
-
Recursive filter design using differential correction
-
D. E. Dudgeon, “Recursive filter design using differential correction,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 443-448, 1974.
-
(1974)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-22
, pp. 443-448
-
-
Dudgeon, D.E.1
-
16
-
-
0016963111
-
Rational Chebyshev approximation in the complex plane
-
June
-
S. Ellacott and J. Williams, “Rational Chebyshev approximation in the complex plane,” SIAM J. Numer. Anal., vol. 13, pp. 310-323, June 1976.
-
(1976)
SIAM J. Numer. Anal.
, vol.13
, pp. 310-323
-
-
Ellacott, S.1
Williams, J.2
-
17
-
-
0019607330
-
A two-variable approach to the model reduction problem with Hankel norm criterion
-
Sept.
-
Y. Genin and S. Kung, “A two-variable approach to the model reduction problem with Hankel norm criterion,” IEEE Trans. Circuits Syst., vol. CAS-28, pp. 912-924, Sept. 1981.
-
(1981)
IEEE Trans. Circuits Syst.
, vol.CAS-28
, pp. 912-924
-
-
Genin, Y.1
Kung, S.2
-
18
-
-
0019695385
-
An introduction to the model reduction problem with Hankel norm criterion
-
The Hague, The Netherlands, Aug.
-
Y. Genin, “An introduction to the model reduction problem with Hankel norm criterion,” in Proc. European Conf. Circuit Theory and Design, The Hague, The Netherlands, Aug. 1981.
-
(1981)
Proc. European Conf. Circuit Theory and Design
-
-
Genin, Y.1
-
19
-
-
84941606359
-
Ein Abstiegsverfahren für gleichmässige Approximation, mit Anwendungen
-
M. Gutknecht, “Ein Abstiegsverfahren für gleichmässige Approximation, mit Anwendungen,” Diss. ETH Zürich, 1973.
-
(1973)
Diss. ETH Zürich
-
-
Gutknecht, M.1
-
20
-
-
35148877729
-
Non-strong uniqueness in real and complex Chebyshev approximation
-
M. Gutknecht, “Non-strong uniqueness in real and complex Chebyshev approximation,” J. Approx. Theory, vol. 23, pp. 204-213, 1978.
-
(1978)
J. Approx. Theory
, vol.23
, pp. 204-213
-
-
Gutknecht, M.1
-
21
-
-
84968687741
-
Rational Carathéodory-Fejér approximation on a disk, a circle, and an interval
-
to be published
-
M. Gutknecht, “Rational Carathéodory-Fejér approximation on a disk, a circle, and an interval,” J. Approx. Theory, to be published.
-
J. Approx. Theory
-
-
Gutknecht, M.1
-
22
-
-
84941603441
-
-
Dep. Comput. Sci., Stanford Univ., Standford, CA, Numer. Anal. ms. NA-80-01
-
M. Gutknecht and L. N. Trefethen, “Recursive digital filter design by the Carathéodory-Fejér method,” Dep. Comput. Sci., Stanford Univ., Standford, CA, Numer. Anal. ms. NA-80-01, 1980.
-
(1980)
“Recursive digital filter design by the Carathéodory-Fejér method,”
-
-
Gutknecht, M.1
Trefethen, L.N.2
-
23
-
-
11544317371
-
Digital filters with equiripple or minimax responses
-
H. D. Helms, “Digital filters with equiripple or minimax responses,” IEEE Trans. Audio Electroacoust., vol. AU-19, pp. 87-94, 1971.
-
(1971)
IEEE Trans. Audio Electroacoust.
, vol.AU-19
, pp. 87-94
-
-
Helms, H.D.1
-
24
-
-
0001351728
-
Fast Fourier methods in computational complex analysis
-
P. Henrici, “Fast Fourier methods in computational complex analysis,” SIAM Rev., vol. 21, pp. 481-527, 1979.
-
(1979)
SIAM Rev.
, vol.21
, pp. 481-527
-
-
Henrici, P.1
-
25
-
-
84941603468
-
System identification tutorials
-
Darmstadt, Germany, Sept. 24-28 and Automatica
-
R. Isermann, Ed., “System identification tutorials,” in Preprints 5th IFAC Symp. Identification, Darmstadt, Germany, Sept. 24-28, 1979, and Automatica, vol. 16, pp. 500-574.
-
(1979)
Preprints 5th IFAC Symp. Identification
, vol.16
, pp. 500-574
-
-
Isermann, R.1
-
26
-
-
6744248781
-
Optimal Hankel-norm model reductions: Scalar systems
-
San Francisco, CA
-
S. Kung, “Optimal Hankel-norm model reductions: Scalar systems,” in Proc. Joint Automat. Contr. Conf., San Francisco, CA, 1980.
-
(1980)
Proc. Joint Automat. Contr. Conf.
-
-
Kung, S.1
-
27
-
-
0019598199
-
A state-space formulation for optimal Hankel-norm approximation
-
Aug.
-
S. Kung and D. W. Lin, “A state-space formulation for optimal Hankel-norm approximation,” IEEE Trans. Automat. Contr., vol. AC-26, pp. 942-946, Aug. 1981.
-
(1981)
IEEE Trans. Automat. Contr.
, vol.AC-26
, pp. 942-946
-
-
Kung, S.1
Lin, D.W.2
-
30
-
-
84937647500
-
A program for the design of linear phase finite impulse response (FIR) digital filters
-
Aug.
-
T. W. Parks and J. H. McClellan, “A program for the design of linear phase finite impulse response (FIR) digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 195-199, Aug. 1972.
-
(1972)
IEEE Trans. Audio Electroacoust.
, vol.AU-20
, pp. 195-199
-
-
Parks, T.W.1
McClellan, J.H.2
-
31
-
-
0015988303
-
Linear programming design of IIR digital filters with arbitrary magnitude function
-
L. R. Rabiner, N. Y. Graham, and H. D. Helms, “Linear programming design of IIR digital filters with arbitrary magnitude function,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP22, pp. 117-123, 1974.
-
(1974)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP22
, pp. 117-123
-
-
Rabiner, L.R.1
Graham, N.Y.2
Helms, H.D.3
-
32
-
-
0013052189
-
The design of wide-band recursive and nonrecursive digital differentiators
-
L. R. Rabiner and K. Steiglitz, “The design of wide-band recursive and nonrecursive digital differentiators,” IEEE Trans. Audio Electroacoust., vol. AU-18, pp. 204-209, 1970.
-
(1970)
IEEE Trans. Audio Electroacoust.
, vol.AU-18
, pp. 204-209
-
-
Rabiner, L.R.1
Steiglitz, K.2
-
34
-
-
0002591789
-
Recursion filters for digital processing
-
Feb.
-
J. L. Shanks, “Recursion filters for digital processing,” Geophysics, vol. 32, pp. 33-51, Feb. 1967.
-
(1967)
Geophysics
, vol.32
, pp. 33-51
-
-
Shanks, J.L.1
-
35
-
-
0003595562
-
-
(Lecture Notes in Comput. Sci. vol. 6), 2nd ed. New York: Springer-Verlag
-
B. T. Smith et al., Matrix Eigensystem Routines-EISPACK Guide (Lecture Notes in Comput. Sci. vol. 6), 2nd ed. New York: Springer-Verlag, 1976.
-
(1976)
Matrix Eigensystem Routines-EISPACK Guide
-
-
Smith, B.T.1
-
36
-
-
84941603252
-
-
Ph.D. dissertation, Dep. Elec. Eng., Stanford Univ., Stanford, CA
-
J. O. Smith, “Methods for system identification and digital filter design with application to the violin,” Ph.D. dissertation, Dep. Elec. Eng., Stanford Univ., Stanford, CA, 1983.
-
(1983)
“Methods for system identification and digital filter design with application to the violin,”
-
-
Smith, J.O.1
-
37
-
-
0014796466
-
Computer-aided design of recursive digital filters
-
K. Steiglitz, “Computer-aided design of recursive digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-18, pp. 123-129, 1970.
-
(1970)
IEEE Trans. Audio Electroacoust.
, vol.AU-18
, pp. 123-129
-
-
Steiglitz, K.1
-
40
-
-
0009303829
-
On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau and Remarks on an algebraic problem
-
and vol. 2, pp. 13-17, 1925
-
T. Takagi, “On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau” and “Remarks on an algebraic problem,” Japan J. Math., vol. 1, pp. 83-93, 1924, and vol. 2, pp. 13-17, 1925.
-
(1924)
Japan J. Math.
, vol.1
, pp. 83-93
-
-
Takagi, T.1
-
41
-
-
0015616985
-
Recursive digital filter design by linear programming
-
P. Thajchayapong and P. J. W. Rayner, “Recursive digital filter design by linear programming,” IEEE Trans. Audio Electroacoust., vol. AU-21, pp. 107-112, 1973.
-
(1973)
IEEE Trans. Audio Electroacoust.
, vol.AU-21
, pp. 107-112
-
-
Thajchayapong, P.1
Rayner, P.J.W.2
-
42
-
-
0001003003
-
Near-circularity of the error curve in complex Chebyshev approximation
-
L. N. Trefethen, “Near-circularity of the error curve in complex Chebyshev approximation,” J. Approx. Theory, vol. 31, pp. 344-367, 1981.
-
(1981)
J. Approx. Theory
, vol.31
, pp. 344-367
-
-
Trefethen, L.N.1
-
43
-
-
0007235470
-
Rational Chebyshev approximation on the unit disk
-
L. N. Trefethen, “Rational Chebyshev approximation on the unit disk,” Numer. Math., vol. 37, pp. 297-320, 1981.
-
(1981)
Numer. Math.
, vol.37
, pp. 297-320
-
-
Trefethen, L.N.1
-
44
-
-
0011544931
-
The Carathéodory-Fejér method for real rational approximation
-
Apr.
-
L. N. Trefethen and M. H. Gutknecht, “The Carathéodory-Fejér method for real rational approximation,” SIAM J. Numer. Anal., vol. 20, pp. 420-436, Apr. 1983.
-
(1983)
SIAM J. Numer. Anal.
, vol.20
, pp. 420-436
-
-
Trefethen, L.N.1
Gutknecht, M.H.2
-
45
-
-
0019716197
-
Adaptive design of digital filters
-
B. Widrow, P. F. Titchener, and R. P. Gooch, “Adaptive design of digital filters,” in Proc. IEEE Conf. Acoust., Speech, Signal Processing, 1981, pp. 243-246.
-
(1981)
Proc. IEEE Conf. Acoust., Speech, Signal Processing
, pp. 243-246
-
-
Widrow, B.1
Titchener, P.F.2
Gooch, R.P.3
-
46
-
-
0018684006
-
Fortran subroutines for solution of Toeplitz sets of linear equations
-
Dec. see also vol. ASSP-28, p. 601, 1980, and vol. ASSP-29, p. 1212, 1981
-
S. Zohar, “Fortran subroutines for solution of Toeplitz sets of linear equations,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-27, pp. 656-658, Dec. 1979; see also vol. ASSP-28, p. 601, 1980, and vol. ASSP-29, p. 1212, 1981.
-
(1979)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-27
, pp. 656-658
-
-
Zohar, S.1
-
47
-
-
84968513674
-
Real and complex Chebyshev approximation on the unit disk and interval
-
May
-
M. H. Gutknecht and L. N. Trefethen, “Real and complex Chebyshev approximation on the unit disk and interval,” Bull. Amer. Math. Soc., vol. 8, pp. 455-458, May 1983.
-
(1983)
Bull. Amer. Math. Soc.
, vol.8
, pp. 455-458
-
-
Gutknecht, M.H.1
Trefethen, L.N.2
-
48
-
-
84941609440
-
Nonuniqueness of best rational Chebyshev approximations on the unit disk
-
to be published
-
M. H. Gutknecht and L. N. Trefethen, “Nonuniqueness of best rational Chebyshev approximations on the unit disk,” J. Approx. Theory, to be published.
-
J. Approx. Theory
-
-
Gutknecht, M.H.1
Trefethen, L.N.2
|