메뉴 건너뛰기




Volumn 26, Issue 2, 1983, Pages 190-212

Truncated-newtono algorithms for large-scale unconstrained optimization

Author keywords

Conjugate Gradient Algorithms; Modified Newton Methods; Unconstrained Optimization

Indexed keywords

OPTIMIZATION;

EID: 0020763823     PISSN: 00255610     EISSN: 14364646     Source Type: Journal    
DOI: 10.1007/BF02592055     Document Type: Article
Times cited : (308)

References (26)
  • 3
    • 85025855948 scopus 로고    scopus 로고
    • R. Chandra, S.C. Eisenstat and M.H. Schultz, “The modified conjugate residual method for partial differential equations”, in: R. Vichnevetsky, ed., Advance in computer methods for partial differential equations II, Proceedings of the Second International Symposium on Computer Methods for Partial Differential Equations, Lehigh University, Bethlehem, PA (International Association for Mathematics and Computers in Simulation, June 1977) pp. 13–19.
  • 7
    • 84950412293 scopus 로고    scopus 로고
    • R. S. Dembo and T. Steihaug, “A test problem for large-scale unconstrained minimization”, School of Organization and Management, Yale University (New Haven, CT) Working Paper Series B (in preparation).
  • 9
    • 0002308279 scopus 로고
    • Conjugate gradient methods for indefinite systems
    • G.A., Watson, Proceedings of Biennial Conference, Dundee, Scotland, 1975, Springer-Verlag, New York
    • (1976) Numerical Analysis , pp. 73-89
    • Fletcher, R.1
  • 12
    • 84950412294 scopus 로고    scopus 로고
    • P.E. Gill and W. Murray, “Safeguarded steplength algorithm for optimization using descent methods”, Technical Report NPL NA 37, National Physical Laboratory (1974).
  • 13
    • 85025869885 scopus 로고    scopus 로고
    • P.E. Gill, W. Murray and S.G. Nash, “A conjugate-gradient approach to Newton-type methods”, presented at ORSA/TIMS Joint National Meeting (Colorado Springs, November 1980).
  • 26
    • 84966243875 scopus 로고
    • Some numerical results using a sparse matrix updating formula in unconstrained optimization
    • (1978) Mathematics of Computation , vol.32 , pp. 839-851
    • Toint1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.