메뉴 건너뛰기




Volumn 29, Issue 3, 1983, Pages 354-356

The Covering Radius of the (215, 16) Reed–Muller Code Is at Least 16276

Author keywords

[No Author keywords available]

Indexed keywords

CODES, SYMBOLIC;

EID: 0020748803     PISSN: 00189448     EISSN: 15579654     Source Type: Journal    
DOI: 10.1109/TIT.1983.1056679     Document Type: Article
Times cited : (133)

References (6)
  • 1
    • 47849098280 scopus 로고
    • On ‘bent’ functions
    • ser. A
    • O. Rothaus, “On ‘bent’ functions,” J. Comb. Theory, ser. A, vol. 20, pp. 300-305, 1976.
    • (1976) J. Comb. Theory , vol.20 , pp. 300-305
    • Rothaus, O.1
  • 3
    • 0015288079 scopus 로고
    • Weight distributions of the cosets of the (32, 6) Reed-Muller code
    • Jan.
    • E. R. Berlekamp and L. R. Welch, “Weight distributions of the cosets of the (32, 6) Reed-Muller code,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 203-207, Jan. 1972.
    • (1972) IEEE Trans. Inform. Theory , vol.IT-18 , pp. 203-207
    • Berlekamp, E.R.1    Welch, L.R.2
  • 4
    • 0019014386 scopus 로고
    • The covering radius of the (128, 8) Reed-Muller code is 56
    • May
    • J. Mykkeltveit, “The covering radius of the (128, 8) Reed-Muller code is 56,” IEEE Trans. Inform. Theory vol. IT-26, pp. 359-362, May 1980.
    • (1980) IEEE Trans. Inform. Theory , vol.IT-26 , pp. 359-362
    • Mykkeltveit, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.