-
1
-
-
0018008609
-
Generalized image restoration by the method of alternating projections
-
Sept
-
D. C. Youla, “Generalized image restoration by the method of alternating projections,” IEEE Trans. Circuits Syst., vol. CAS-25, Sept. 1978.
-
(1978)
IEEE Trans. Circuits Syst
, vol.CAS-25
-
-
Youla, D.C.1
-
2
-
-
84949069862
-
Super-resolution through error energy reduction
-
R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta, vol. 21, pp. 709-720, 1974.
-
(1974)
Opt. Acta
, vol.21
, pp. 709-720
-
-
Gerchberg, R.W.1
-
3
-
-
0016552759
-
A new algorithm in spectral analysis and band-limited extrapolation
-
A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst., vol. CAS-22, pp. 735-742, 1975.
-
(1975)
IEEE Trans. Circuits Syst
, vol.CAS-22
, pp. 735-742
-
-
Papoulis, A.1
-
4
-
-
0019575351
-
Restoration of arbitrary finite-energy optical objects from limited spatial and spectral information
-
H. Stark, D. Cahana, and H. Webb, “Restoration of arbitrary finite-energy optical objects from limited spatial and spectral information,” J. Opt. Soc. Amer., vol. 71, no. 6, pp. 635-642, 1981.
-
(1981)
J. Opt. Soc. Amer.
, vol.71
, Issue.6
, pp. 635-642
-
-
Stark, H.1
Cahana, D.2
Webb, H.3
-
5
-
-
84975625103
-
Is it possible to restore an optical object from its low-pass spectrum and its truncated image?
-
H. Stark, D. Cahana, and G. J. Habetler, “Is it possible to restore an optical object from its low-pass spectrum and its truncated image?,” Opt. Lett., vol. 6, no. 6, pp. 259-260, 1981.
-
(1981)
Opt. Lett
, vol.6
, Issue.6
, pp. 259-260
-
-
Stark, H.1
Cahana, D.2
Habetler, G.J.3
-
6
-
-
84975633816
-
Restoration of images possessing a finite Fourier series
-
W. D. Montgomery, “Restoration of images possessing a finite Fourier series,” Opt. Lett., vol. 7, no. 2, pp. 54-56, 1982.
-
(1982)
Opt. Lett
, vol.7
, Issue.2
, pp. 54-56
-
-
Montgomery, W.D.1
-
7
-
-
84975635031
-
Optical applications of von Neumman's alternating projection theorem
-
“Optical applications of von Neumman's alternating projection theorem,” Opt. Lett., vol. 7, no. 1, pp. 1-3, 1982.
-
(1982)
Opt. Lett
, vol.7
, Issue.1
, pp. 1-3
-
-
-
10
-
-
0347023122
-
Image restoration by the method of projections onto convex sets-Part 1
-
POLY-MRI 1420-81, Dec
-
D. C. Youla, “Image restoration by the method of projections onto convex sets-Part 1,” POLY-MRI 1420-81, Dec. 1981.
-
(1981)
-
-
Youla, D.C.1
-
11
-
-
84945717902
-
Projections on convex sets in Hilbert space and spectral theory, Parts I and II
-
E. H. Zarontella, Ed
-
E. H. Zarontello, “Projections on convex sets in Hilbert space and spectral theory, Parts I and II,” in Contributions to Nonlinear Functional Analysis, Proc, E. H. Zarontella, Ed., 1971.
-
(1971)
Contributions to Nonlinear Functional Analysis, Proc
-
-
Zarontello, E.H.1
-
12
-
-
84937740589
-
-
(Ann. Math. Studies, no. 22). Princeton, NJ, Theorem 13.7
-
J. von Neumann, Functional Operators, vol. II (Ann. Math. Studies, no. 22). Princeton, NJ, 1950, p. 55, Theorem 13.7.
-
(1950)
Functional Operators
, vol.II
, pp. 55
-
-
von Neumann, J.1
-
13
-
-
0002477272
-
The product of projection operators
-
I. Halperin, “The product of projection operators,” Acta Sci. Math., vol. 23, pp. 96-99, 1962.
-
(1962)
Acta Sci. Math
, vol.23
, pp. 96-99
-
-
Halperin, I.1
-
14
-
-
0001263852
-
Finding the common point of convex sets by the method of successive projection
-
L. M. Bregman, “Finding the common point of convex sets by the method of successive projection,” Dokl. Akad. Nauk SSSR, vol. 162, no. 3, pp. 487-490, 1965.
-
(1965)
Dokl. Akad. Nauk SSSR
, vol.162
, Issue.3
, pp. 487-490
-
-
Bregman, L.M.1
-
15
-
-
33845708830
-
The method of projections for finding the common point of convex sets
-
L. G. Gubin, B. T. Polyak, and E. V. Raik, “The method of projections for finding the common point of convex sets,” U.S.S.R. Computational Mathematics and Mathematical Physics, vol. 7, no. 6, pp. 1-24, 1967.
-
(1967)
U.S.S.R. Computational Mathematics and Mathematical Physics
, vol.7
, Issue.6
, pp. 1-24
-
-
Gubin, L.G.1
Polyak, B.T.2
Raik, E.V.3
-
16
-
-
0000963707
-
Fixed-point theorems for noncompact mappings in Hilbert space
-
F. E. Browder, “Fixed-point theorems for noncompact mappings in Hilbert space,” Proc. Nat. Acad. Sci., U.S.A., vol. 53, pp. 1272-1276, 1965.
-
(1965)
Proc. Nat. Acad. Sci., U.S.A
, vol.53
, pp. 1272-1276
-
-
Browder, F.E.1
-
17
-
-
57149136888
-
The solution by iteration of nonlinear functional equations in Banach space
-
F. E. Browder and W. Petryshyn, “The solution by iteration of nonlinear functional equations in Banach space,” Bull. Amer. Math. Soc, vol. 72, pp. 571-575, 1966.
-
(1966)
Bull. Amer. Math. Soc
, vol.72
, pp. 571-575
-
-
Browder, F.E.1
Petryshyn, W.2
-
18
-
-
84968481460
-
Weak convergence of the sequence of successive approximations for nonexpansive mappings
-
Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Amer. Math. Soc, vol. 73, pp. 591-597, 1967.
-
(1967)
Bull. Amer. Math. Soc
, vol.73
, pp. 591-597
-
-
Opial, Z.1
-
19
-
-
84937744524
-
An iterative method for the extrapolation of bandlimited functions
-
Buffalo, NY, Tech. Rep. MIPG35, Oct
-
A. Lent and H. Tuy, “An iterative method for the extrapolation of bandlimited functions,” Medical Imaging Processing Group, SUNY, Buffalo, NY, Tech. Rep. MIPG35, Oct. 1979.
-
(1979)
Medical Imaging Processing Group, SUNY
-
-
Lent, A.1
Tuy, H.2
-
20
-
-
0019625454
-
An iterative method for the extrapolation of bandlimited functions
-
“An iterative method for the extrapolation of bandlimited functions,” J. Math. Anal. Appl., vol. 83, pp. 554-565, 1981.
-
(1981)
J. Math. Anal. Appl
, vol.83
, pp. 554-565
-
-
-
21
-
-
0019284633
-
Signal reconstruction from phase or magnitude
-
Speech, Signal Processing, Dec
-
M. H. Hayes, J. S. Lim, and A. V. Oppenheim, “Signal reconstruction from phase or magnitude,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, Dec. 1980.
-
(1980)
IEEE Trans. Acoust
, vol.ASSP-28
-
-
Hayes, M.H.1
Lim, J.S.2
Oppenheim, A.V.3
-
22
-
-
84937741389
-
Iterative procedures for signal reconstruction from phase
-
Washington, DC, Apr
-
A. V. Oppenheim, M. H. Hayes, and J. S. Lim, “Iterative procedures for signal reconstruction from phase,” in Proc. SPIE Conf., Washington, DC, Apr. 1980, pp. 10-11.
-
(1980)
Proc. SPIE Conf
, pp. 10-11
-
-
Oppenheim, A.V.1
Hayes, M.H.2
Lim, J.S.3
-
23
-
-
0020113074
-
The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform
-
Speech, Signal Processing, Apr
-
M. H. Hayes, “The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, Apr. 1982.
-
(1982)
IEEE Trans. Acoust
, vol.ASSP-30
-
-
Hayes, M.H.1
|