메뉴 건너뛰기




Volumn 12, Issue 6, 1980, Pages 355-368

On the dominance of non-parametric Bayes rule discriminant algorithms in high dimensions

(1)  Van Ness, John a  

a NONE

Author keywords

Dimension reduction; Discriminant analysis; Non parametric methods; Pattern recognition; Variable selection

Indexed keywords

PATTERN RECOGNITION SYSTEMS;

EID: 0019226255     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/0031-3203(80)90012-6     Document Type: Article
Times cited : (39)

References (15)
  • 1
    • 0008848930 scopus 로고
    • The problem of too many measurements in pattern recognition and prediction
    • (1966) IEEE int. Conv. Rec. , vol.14 , pp. 124-130
    • Allais1
  • 9
    • 84910255109 scopus 로고    scopus 로고
    • J. Van Ness, On the effects of dimension in discriminant analysis for unequal covariance populations, to appear in Technometrics.
  • 10
    • 84910243648 scopus 로고    scopus 로고
    • J. Van Ness and R. Peck, The effects of increasing dimensions in discriminant analysis for elliptical co-variance populations. Technical Report No. 46, Mathematical Sciences Program, The University of Texas at Dallas, TX, U.S.A.
  • 12
    • 84910272979 scopus 로고    scopus 로고
    • J. Van Ness, A. Sterling, N. Zinner and R. Ritter, Discriminant analysis to detect erethral constrictions using drop spectrometer data, Technical Report No. 2. (NSF-GP-37984), Department of Statistics, Carnegie-Mellon University.
  • 15
    • 84910281213 scopus 로고    scopus 로고
    • B. J. Murphy and M. A. Moran, A comparison of parametric and kernel density approaches to discriminant analysis, Tech. Report, Dept. of Statistics, University College, Cork, Ireland.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.