-
1
-
-
0041816559
-
A[11,4,4]=35 or some new optimal constant weight codes
-
Math. Centre, P.O. Box. 4079, 1009 AB, Amsterdam, The Netherlands, Report ZN 71/77
-
M. R. Best, “A[11,4,4]=35 or some new optimal constant weight codes,” Math. Centre, P.O. Box. 4079, 1009 AB, Amsterdam, The Netherlands, Report ZN 71/77, 1977.
-
(1977)
-
-
Best, M.R.1
-
2
-
-
83055192165
-
Binary codes with minimum distance four
-
Math. Centre, Report ZW 112/78
-
—, “Binary codes with minimum distance four,” Math. Centre, Report ZW 112/78, 1978.
-
(1978)
-
-
Best, M.R.1
-
3
-
-
9144219601
-
The triply shortened binary Hamming code is optimal
-
M. R. Best and A. E. Brouwer, “The triply shortened binary Hamming code is optimal,” Discrete Math., vol. 17, pp. 235–245, 1977.
-
(1977)
Discrete Math.
, vol.17
, pp. 235-245
-
-
Best, M.R.1
Brouwer, A.E.2
-
4
-
-
0017926560
-
Bounds for binary codes of length less than 25
-
M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko and N. J. A. Sloane, “Bounds for binary codes of length less than 25,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 81–93, 1978.
-
(1978)
IEEE Trans. Inform. Theory
, vol.IT-24
, pp. 81-93
-
-
Best, M.R.1
Brouwer, A.E.2
Macwilliams, F.J.3
Odlyzko, A.M.4
Sloane, N.J.A.5
-
5
-
-
0015357424
-
Bounds for unrestricted codes, by linear programming
-
P. Delsarte, “Bounds for unrestricted codes, by linear programming,” Philips Res. Reports, vol 27, pp. 272–289, 1972.
-
(1972)
Philips Res. Reports
, vol.27
, pp. 272-289
-
-
Delsarte, P.1
-
7
-
-
0001336166
-
A new upper bound for error-correcting codes
-
S. M. Johnson, “A new upper bound for error-correcting codes,” IEEE Trans. Inform. Theory, vol. IT-8, pp. 203–207, 1962.
-
(1962)
IEEE Trans. Inform. Theory
, vol.IT-8
, pp. 203-207
-
-
Johnson, S.M.1
-
8
-
-
84916284602
-
Two improved block codes
-
D. Julin, “Two improved block codes,” IEEE Trans. Inform. Theory, vol. IT-11, p. 459, 1965.
-
(1965)
IEEE Trans. Inform. Theory
, vol.IT-11
, pp. 459
-
-
Julin, D.1
-
9
-
-
84972583065
-
Maximal and minimal coverings of (k-1)-tuples by k-tuples
-
J. G. Kalbfleish and R. G. Stanton, “Maximal and minimal coverings of (k-1)-tuples by k-tuples,” Pacific J. Math., vol. 26, pp. 131–140, 1968.
-
(1968)
Pacific J. Math.
, vol.26
, pp. 131-140
-
-
Kalbfleish, J.G.1
Stanton, R.G.2
-
10
-
-
0001017029
-
Sphere packings and error-correcting codes
-
J. Leech and N. J. A. Sloane, “Sphere packings and error-correcting codes,” Canad. J. Math., vol. 23, pp. 718–745, 1971.
-
(1971)
Canad. J. Math.
, vol.23
, pp. 718-745
-
-
Leech, J.1
Sloane, N.J.A.2
-
12
-
-
33748719633
-
Binary codes, lattices and sphere-packings
-
P. J. Cameron, Ed. New York: Academic
-
N. J. A. Sloane, “Binary codes, lattices and sphere-packings,” in Combinatorial Surveys, P. J. Cameron, Ed. New York: Academic, 1977, pp. 117–164.
-
(1977)
Combinatorial Surveys
, pp. 117-164
-
-
Sloane, N.J.A.1
-
13
-
-
0014872746
-
A new family of single-error-correcting codes
-
N. J. A. Sloane and D. S. Whitehead, “A new family of single-error-correcting codes,” IEEE Trans. Inform. Theory, vol. IT-16, pp. 717–719, 1970.
-
(1970)
IEEE Trans. Inform. Theory
, vol.IT-16
, pp. 717-719
-
-
Sloane, N.J.A.1
Whitehead, D.S.2
-
14
-
-
0016101927
-
A low-rate improvement of the Elias bound
-
L. R. Welch, R. J. McEliece, and H. C. Rumsey, Jr., “A low-rate improvement of the Elias bound,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 676–678, 1974.
-
(1974)
IEEE Trans. Inform. Theory
, vol.IT-20
, pp. 676-678
-
-
Welch, L.R.1
McEliece, R.J.2
Rumsey, H.C.3
|