-
1
-
-
11544317371
-
Digital filters with equiripple or minimax responses
-
Mar.
-
H. D. Helms “Digital filters with equiripple or minimax responses,” IEEE Trans. Audio Electroacoust., vol. AU-19, pp. 87–93, Mar. 1971.
-
(1971)
IEEE Trans. Audio Electroacoust.
, vol.AU-19
, pp. 87-93
-
-
Helms, H.D.1
-
2
-
-
0015404918
-
Linear programming design of finite impulse response (FIR) digital filters
-
Oct.
-
L. R. Rabiner “Linear programming design of finite impulse response (FIR) digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 280–288, Oct. 1972.
-
(1972)
IEEE Trans. Audio Electroacoust.
, vol.AU-20
, pp. 280-288
-
-
Rabiner, L.R.1
-
3
-
-
0014797301
-
Designing simple, effective digital filters
-
June
-
D. W. Tufts, D. W. Rorabacher, and W. E. Mosier “Designing simple, effective digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-18, pp. 142–158, June 1970.
-
(1970)
IEEE Trans. Audio Electroacoust.
, vol.AU-18
, pp. 142-158
-
-
Tufts, D.W.1
Rorabacher, D.W.2
Mosier, W.E.3
-
4
-
-
0014536426
-
The design of optimal convolutional filters via linear programming
-
July
-
R. K. Cavin, III, C. H. Ray, and V. T. Rhyne “The design of optimal convolutional filters via linear programming,” IEEE Trans. Geosci. Electron., vol. GE-7, pp. 142–145, July 1969.
-
(1969)
IEEE Trans. Geosci. Electron.
, vol.GE-7
, pp. 142-145
-
-
Cavin, R.K.1
Ray, C.H.2
Rhyne, V.T.3
-
5
-
-
0015056791
-
On the approximation problem in nonrecursive digital filter design
-
May, (Reprinted in Digital Signal Processing, L. R. Rabiner and C. M. Rader, Eds. New York, NY: IEEE Press, 1972.)
-
O. Herrmann “On the approximation problem in nonrecursive digital filter design,” IEEE Trans. Circuit Theory, vol. CT-18, pp. 411–413, May 1971. (Reprinted in Digital Signal Processing, L. R. Rabiner and C. M. Rader, Eds. New York, NY: IEEE Press, 1972.)
-
(1971)
IEEE Trans. Circuit Theory
, vol.CT-18
, pp. 411-413
-
-
Herrmann, O.1
-
6
-
-
84944025726
-
Design subroutine (MXFLAT) for symmetric FIR low-pass digital filters with maximally-flat pass- and stopbands
-
to appear
-
J. F. Kaiser, “Design subroutine (MXFLAT) for symmetric FIR low-pass digital filters with maximally-flat pass- and stopbands,” to appear.
-
-
-
Kaiser, J.F.1
-
7
-
-
0017554874
-
Data smoothing using lowpass digital filters
-
Nov.
-
J. F. Kaiser and W. A. Reed “Data smoothing using lowpass digital filters,” Rev. Sci. Instrum., vol. 48, pp. 1447–1457, Nov. 1977.
-
(1977)
Rev. Sci. Instrum.
, vol.48
, pp. 1447-1457
-
-
Kaiser, J.F.1
Reed, W.A.2
-
8
-
-
0017915992
-
Filters with Chebyshev stopbands, flat passbands, and impulse responses of finite duration
-
New York, NY
-
S. Darlington, “Filters with Chebyshev stopbands, flat passbands, and impulse responses of finite duration,” in Proc. 1978 IEEE Int. Symp. Circuits Syst., New York, NY, pp. 40–44.
-
Proc. 1978 IEEE Int. Symp. Circuits Syst.
, pp. 40-44
-
-
Darlington, S.1
-
9
-
-
0015723180
-
A computer program for designing optimum FIR linear phase digital filters
-
Dec.
-
J. H. McClellan, T. W. Parks, and L. R. Rabiner “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-21, pp. 506–526, Dec. 1973.
-
(1973)
IEEE Trans. Audio Electroacoust.
, vol.AU-21
, pp. 506-526
-
-
McClellan, J.H.1
Parks, T.W.2
Rabiner, L.R.3
-
11
-
-
0000657061
-
Algorithms for best L1 and L∞ linear approximation on a discrete set
-
I. Barrodale and A. Young “Algorithms for best L1 and L∞ linear approximation on a discrete set,” Numerische Mathematik, vol. 8, pp. 295–306, 1966.
-
(1966)
Numerische Mathematik
, vol.8
, pp. 295-306
-
-
Barrodale, I.1
Young, A.2
-
12
-
-
0014522864
-
The finite Fourier transform
-
June, (Reprinted in Digital Signal Processing, L. R. Rabiner and C. M. Rader, Eds. New York, NY: IEEE Press, 1972.)
-
J. W. Cooley, P. A. W. Lewis, and P. D. Welch “The finite Fourier transform,” IEEE Trans. Audio Electroacoust., vol. AU-17, pp. 77–85, June 1969. (Reprinted in Digital Signal Processing, L. R. Rabiner and C. M. Rader, Eds. New York, NY: IEEE Press, 1972.)
-
(1969)
IEEE Trans. Audio Electroacoust.
, vol.AU-17
, pp. 77-85
-
-
Cooley, J.W.1
Lewis, P.A.W.2
Welch, P.D.3
-
13
-
-
0018320944
-
Optimal design of digital Hilbert transformers with a concavity constraint
-
Washington, DC, Apr. 2–4
-
K. Steiglitz, “Optimal design of digital Hilbert transformers with a concavity constraint,” in Proc. 1979 IEEE Int Conf. Acoust., Speech, Signal Processing, Washington, DC, Apr. 2–4, 1979, pp. 824–827.
-
(1979)
Proc. 1979 IEEE Int Conf. Acoust., Speech, Signal Processing
, pp. 824-827
-
-
Steiglitz, K.1
-
14
-
-
84944025727
-
-
has suggested that a chirp transform taking 0(P log M) time may be useful here; personal communication
-
H. D. Helms has suggested that a chirp transform taking 0(P log M) time may be useful here; personal communication.
-
-
-
Helms, H.D.1
|