-
1
-
-
84988093164
-
Data analysis in the social sciences: What about the details?
-
G. H. Ball, “Data analysis in the social sciences: What about the details?,” in Proc. Fall Joint Computer Conf., , 1965, pp. 533–554.
-
(1965)
Proc. Fall Joint Computer Conf.
, pp. 533-554
-
-
Ball, G.H.1
-
2
-
-
0041654220
-
Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
-
Mar.
-
J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika, vol. 29, pp. 1–27, Mar. 1964.
-
(1964)
Psychometrika
, vol.29
, pp. 1-27
-
-
Kruskal, J.B.1
-
3
-
-
24944533365
-
Nonmetric multidimensional scaling: A numerical method
-
June
-
J. B. Kruskal, “Nonmetric multidimensional scaling: A numerical method,” Psychometrika, vol. 29, pp. 115–129, June 1964.
-
(1964)
Psychometrika
, vol.29
, pp. 115-129
-
-
Kruskal, J.B.1
-
4
-
-
34250926052
-
The analysis of proximities: Multidimensional scaling with an unknown distance function
-
June
-
R. N. Shepard, “The analysis of proximities: Multidimensional scaling with an unknown distance function,” Psychometrika, vol. 27, pp. 125–140, June 1962.
-
(1962)
Psychometrika
, vol.27
, pp. 125-140
-
-
Shepard, R.N.1
-
5
-
-
0014563685
-
The intrinsic dimensionality of signal collections
-
Sept.
-
R. S. Bennett, “The intrinsic dimensionality of signal collections,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 517–525, Sept. 1969.
-
(1969)
IEEE Trans. Inform. Theory
, vol.IT-15
, pp. 517-525
-
-
Bennett, R.S.1
-
6
-
-
0016028877
-
Nonlinear intrinsic dimensionality computations
-
Feb.
-
C. K. Chen and H. C. Andrews, “Nonlinear intrinsic dimensionality computations,” IEEE Trans. Comput., vol. C-23, pp. 178–184, 184, Feb. 1974.
-
(1974)
IEEE Trans. Comput.
, vol.C-23
, pp. 178-184
-
-
Chen, C.K.1
Andrews, H.C.2
-
7
-
-
0003326616
-
Parametric representation of nonlinear data structures
-
P. R.Krishnaiah, Ed. New York: Academic
-
R. N. Shepard and J. D. Carroll, “Parametric representation of nonlinear data structures,” in Multivariate Analysis, P. R. Krish-naiah, Ed. New York: Academic, 1966, pp. 561–592.
-
(1966)
Multivariate Analysis
, pp. 561-592
-
-
Shepard, R.N.1
Carroll, J.D.2
-
8
-
-
84887006810
-
A nonlinear mapping for data structure analysis
-
May
-
J. W. Sammon, Jr., “A nonlinear mapping for data structure analysis,” IEEE Trans. Comput., vol. C-18, pp. 401–409, May 1969.
-
(1969)
IEEE Trans. Comput.
, vol.C-18
, pp. 401-409
-
-
Sammon, J.W.1
-
9
-
-
84910237391
-
A nonlinear mapping for data structure analysis
-
Dec.
-
J. B. Kruskal, “A nonlinear mapping for data structure analysis,” IEEE Trans. Comput., vol. C-20, p. 1614, Dec. 1971.
-
(1971)
IEEE Trans. Comput.
, vol.C-20 p
, pp. 1614
-
-
Kruskal, J.B.1
-
10
-
-
0015592191
-
A heuristic relaxation method for nonlinear mapping in cluster analysis
-
Mar.
-
C. L. Chang and R. C. T. Lee, “A heuristic relaxation method for nonlinear mapping in cluster analysis,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 197–200, Mar. 1973.
-
(1973)
IEEE Trans. Syst., Man, Cybern.
, vol.SMC-3
, pp. 197-200
-
-
Chang, C.L.1
Lee, R.C.T.2
-
11
-
-
38149117826
-
A geometric interpretation of diagnostic data from a digital machine
-
J. B. Kruskal and R. E. Hart, “A geometric interpretation of diagnostic data from a digital machine,” Bell Syst. Tech. J., vol. 45, pp. 1299-1338, 1966.
-
(1966)
Bell Syst. Tech. J.
, vol.45
, pp. 1299-1338
-
-
Kruskal, J.B.1
Hart, R.E.2
-
12
-
-
40649095632
-
Linear transformations of multivariate data to reveal clustering
-
R. N. Shepard, A. K. Romney, and S. B. Nerlove. New York: Seminar Press
-
J. B. Kruskal, “Linear transformations of multivariate data to reveal clustering,” in Multidimensional Scaling, vol. 1, Theory, R. N. Shepard, A. K. Romney, and S. B. Nerlove. New York: Seminar Press, 1972.
-
(1972)
Multidimensional Scaling, vol. 1 , Theory
-
-
Kruskal, J.B.1
-
13
-
-
0000742860
-
Geometrical models and badness-of-fit functions
-
P. R. Krishnaiah, Ed. New York: Academic
-
J. B. Kruskal and J. D. Carroll, “Geometrical models and badness-of-fit functions,” in Multivariate Analysis-II, P. R. Krishnaiah, Ed. New York: Academic, 1969, pp. 639–671.
-
(1969)
Multivariate Analysis-II
, pp. 639-671
-
-
Kruskal, J.B.1
Carroll, J.D.2
-
14
-
-
33645225931
-
Representation of structure in similarity data-problems problems and prospects
-
Dec.
-
R. N. Shepard, “Representation of structure in similarity data-problems problems and prospects,” Psychometrika, vol. 39, pp. 373–421, Dec. 1974.
-
(1974)
Psychometrika
, vol.39
, pp. 373-421
-
-
Shepard, R.N.1
-
15
-
-
34250736724
-
-
New York: Seminar Press Applications
-
A. K. Romney, R. N. Shepard, and S. B. Nerlove, Multidimensional Scaling, vol. 2, Applications. New York: Seminar Press, 1972.
-
(1972)
Multidimensional Scaling
, vol.2
-
-
Romney, A.K.1
Shepard, R.N.2
Nerlove, S.B.3
-
16
-
-
34250736724
-
-
New York: Seminar Press
-
A. K. Romney, R. N. Shepard, and S. B. Nerlove, Multidimensional Scaling, vol. I, Theory. New York: Seminar Press, 1972.
-
(1972)
Multidimensional Scaling, vol. I , Theory
-
-
Romney, A.K.1
Shepard, R.N.2
Nerlove, S.B.3
-
17
-
-
0016652684
-
An algorithm for determining the topological dimensionality of point clusters
-
Dec.
-
D. H. Schwartzmann and J. J. Vidal, “An algorithm for determining the topological dimensionality of point clusters,” IEEE Trans. Comput., vol. C-24, pp. 1175–1182, Dec. 1975.
-
(1975)
IEEE Trans. Comput.
, vol.C-24
, pp. 1175-1182
-
-
Schwartzmann, D.H.1
Vidal, J.J.2
-
18
-
-
0015011520
-
An algorithm for finding intrinsic dimensionality of data
-
Feb.
-
K. Fukunaga and D. R. Olsen, “An algorithm for finding intrinsic dimensionality of data,” IEEE Trans. Comput., vol. C-20, pp. 176-183, Feb. 1971.
-
(1971)
IEEE Trans. Comput.
, vol.C-20
, pp. 176-183
-
-
Fukunaga, K.1
Olsen, D.R.2
-
19
-
-
0016917031
-
Statistical estimation of the intrinsic dimensionality of a noisy signal collection
-
Feb.
-
G. V. Trunk, “Statistical estimation of the intrinsic dimensionality of a noisy signal collection,” IEEE Trans. Comput., vol. C-25, pp. 165–171, Feb. 1976.
-
(1976)
IEEE Trans. Comput.
, vol.C-25
, pp. 165-171
-
-
Trunk, G.V.1
-
21
-
-
0004256573
-
-
Reading, MA: Addison-Wesley
-
L. Breiman, Probability. Reading, MA: Addison-Wesley, 1968, pp. 237–238.
-
(1968)
Probability
, pp. 237-238
-
-
Breiman, L.1
-
22
-
-
0006573347
-
Gamma function and related functions
-
M. Abramowitz and I. A. Stegun, Eds. Washington, DC: U.S. Government Printing Office
-
P. J. Davis, “Gamma function and related functions,” Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, Eds. Washington, DC: U.S. Government Printing Office, 1965, pp. 253–293.
-
(1965)
Handbook of Mathematical Functions
, pp. 253-293
-
-
Davis, P.J.1
-
23
-
-
0015680655
-
Clustering using a similarity measure based on shared near neighbors
-
Nov
-
R. A. Jarvis and E. A. Patrick, “Clustering using a similarity measure based on shared near neighbors,” IEEE Trans. Comput., vol. C-22, pp. 1025–1034, Nov 1973
-
(1973)
IEEE Trans. Comput.
, vol.C-22
, pp. 1025-1034
-
-
Jarvis, R.A.1
Patrick, E.A.2
-
24
-
-
84926662675
-
Nearest neighbor pattern classification
-
Jan
-
T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inform. Theory, vol. IT-13, pp, 21–26, Jan, 1967.
-
(1967)
IEEE Trans. Inform. Theory, vol
, vol.IT-13 pp
, pp. 21-26
-
-
Cover, T.M.1
Hart, P.E.2
-
25
-
-
0014781120
-
Nonorthogonal projections for feature extraction in pattern recognition
-
May
-
T. W. Calvert, “Nonorthogonal projections for feature extraction in pattern recognition,” IEEE Trans. Comput., vol. C-19, pp. 447–452, May 1970
-
(1970)
IEEE Trans. Comput., vol
, vol.C-19
, pp. 447-452
-
-
Calvert, T.W.1
-
26
-
-
0017471365
-
A triangulation method for the sequential mapping of points from N-space to two-space
-
Mar.
-
R. C. T. Lee, J. R. Slagle, and H. Blum, “A triangulation method for the sequential mapping of points from N-space to two-space,” IEEE Trans. Comput., vol. C-26, pp, 288–292, Mar. 1977.
-
(1977)
IEEE Trans. Comput., vol
, vol.C-26
, pp. 288-292
-
-
Lee, R.C.T.1
Slagle, J.R.2
Blum, H.3
-
27
-
-
0016567534
-
An algorithm for finding nearest neighbors
-
Oct.
-
J. H. Friedman, F. Baskett, and L. J. Shustek, “An algorithm for finding nearest neighbors,” IEEE Trans. Comput., vol. C-25, pp. 1000–1006, Oct. 1975.
-
(1975)
IEEE Trans. Comput.
, vol.C-25
, pp. 1000-1006
-
-
Friedman, J.H.1
Baskett, F.2
Shustek, L.J.3
-
28
-
-
0017007427
-
A technique to identify nearest neighbors
-
Oct.
-
T. P. Yunck, “A technique to identify nearest neighbors,” IEEE Trans. Syst., Man, Cybern., vol. SMC-6, 678–683, Oct. 1976.
-
(1976)
IEEE Trans. Syst., Man, Cybern.
, vol.SMC-6
, pp. 678-683
-
-
Yunck, T.P.1
-
29
-
-
0004918181
-
A note ona method for generating points uniformly on N-dimensional spheres
-
Apr.
-
M. E. Muller, “A note on a method for generating points uniformly on N-dimensional spheres,” Commun. Ass. Comput. Mach., vol. 2, pp. 19–20, Apr. 1959.
-
(1959)
Commun. Ass. Comput. Mach.
, vol.2
, pp. 19-20
-
-
Muller, M.E.1
|