-
4
-
-
33746785339
-
Generalized resultant.
-
H. H. Rosenbrock. “Generalized resultant.” Electron. Lett., vol. 4, pp. 250-251, 1968.
-
(1968)
Electron. Lett.
, vol.4
, pp. 250-251
-
-
Rosenbrock, H.H.1
-
5
-
-
84939347362
-
Determination of the least order of transfer function matrices
-
N. Munro, “Determination of the least order of transfer function matrices,” Proc. IEE, vol. 118, pp. 1507-1510.
-
(1510)
Proc. IEE
, vol.118
, pp. 1507-1510
-
-
Munro, N.1
-
6
-
-
84971124413
-
Regular polynomial matrices having relatively prime determinants
-
S. Barnett, “Regular polynomial matrices having relatively prime determinants,” Proc. Cambridge Philos. Soc., vol. 65, pp. 585-590, 1969.
-
(1969)
Proc. Cambridge Philos. Soc.
, vol.65
, pp. 585-590
-
-
Barnett, S.1
-
8
-
-
77958400901
-
The generalized resultant matrix
-
A. Rowe, “The generalized resultant matrix,” J. Inst. Math. Appl., vol. 9, pp. 390-396, 1972.
-
(1972)
J. Inst. Math. Appl.
, vol.9
, pp. 390-396
-
-
Rowe, A.1
-
10
-
-
0017480813
-
New criteria and system theoretic interpretation for relatively prime polynomial matrices.
-
Apr.
-
“New criteria and system theoretic interpretation for relatively prime polynomial matrices.” IEEE Trans. Automat. Contr. vol. AC-22, pp. 239-242. Apr. 1977.
-
(1977)
IEEE Trans. Automat. Contr.
, vol.AC-22
, pp. 239-242
-
-
-
11
-
-
84968501422
-
Resultants of matrix polynomials.
-
July
-
I.C. Gohberg and L. E. Lerer, “Resultants of matrix polynomials.” Bui. Am. Math. Soc., vol. 82. no. 4, pp. 565-567, July 1976.
-
(1976)
Bui. Am. Math. Soc.
, vol.82
, Issue.4
, pp. 565-567
-
-
Gohberg, I.C.1
Lerer, L.E.2
-
12
-
-
0015632441
-
A minimization algorithm for the design of linear multivariable svstems
-
June
-
S.-H. Wang and E. J. Davison. “A minimization algorithm for the design of linear multivariable svstems,” IEEE Trans. Automat. Contr. vol. AC-18, pp. 220-225, June 1973.
-
(1973)
IEEE Trans. Automat. Contr.
, vol.AC-18
, pp. 220-225
-
-
Wang, S.-H.1
Davison, E.J.2
-
13
-
-
0017634377
-
An algorithm for obtaining the minimal realization of a linear time-invariant system and determining if a system is stabilizable-detectable
-
New Orleans, LA
-
E. J. Davison. W. Gesing, and S.-H. Wang. “An algorithm for obtaining the minimal realization of a linear time-invariant system and determining if a system is stabilizable-detectable,” in Proc. IEEE Conf. on Decision and Control, 1977. New Orleans, LA, pp. 777-781.
-
(1977)
in Proc. IEEE Conf. on Decision and Control
, pp. 777-781
-
-
Davison, E.J.1
Gesing, W.2
Wang, S.-H.3
-
14
-
-
85048645480
-
Fast and stable algorithms for the minimal design problem.
-
D. P. Atherton, Ed. London: Pergamon
-
S.-Y. Kung, T. Kailath, and M. Morf, “Fast and stable algorithms for the minimal design problem.” in Proc. 4th IFAC Symp. on Multic. Technological Syst., D. P. Atherton, Ed. London: Pergamon, 1979.
-
(1979)
in Proc. 4th IFAC Symp. on Multic. Technological Syst.
-
-
Kung, S.-Y.1
Kailath, T.2
Morf, M.3
-
16
-
-
84912198226
-
Implementation of computer algorithms related to multivariable systems theory
-
M.S. dissertation. Div. Eng., Brown Univ., Providence, RI, June
-
H. Elliott, “Implementation of computer algorithms related to multivariable systems theory,” M.S. dissertation. Div. Eng., Brown Univ., Providence, RI, June 1975.
-
(1975)
-
-
Elliott, H.1
-
17
-
-
0016508669
-
Minimal bases of rational vector spaces, with application to multivariable linear systems.
-
G. D. Forney, “Minimal bases of rational vector spaces, with application to multivariable linear systems.” SIAM J. Contr., vol. 13. pp. 493-520, 1975.
-
(1975)
SIAM J. Contr.
, vol.13
, pp. 493-520
-
-
Forney, G.D.1
-
18
-
-
0003836078
-
Multivariable and multidimensional systems: Analysis and design
-
Ph.D. dissertation, Dep. Elec. Eng., Stanford Univ. Stanford, CA, June
-
S.-Y. Kung, “Multivariable and multidimensional systems: Analysis and design,” Ph.D. dissertation, Dep. Elec. Eng., Stanford Univ. Stanford, CA, June 1977.
-
(1977)
-
-
Kung, S.-Y.1
-
19
-
-
0001990709
-
A generalized resultant matrix for polynomial matrices
-
Florida
-
S.-Y. Kung, T. Kailath, and M. Morf, “A generalized resultant matrix for polynomial matrices,” in Proc. IEEE Conf. on Decision and Control, 1976, Florida, pp. 892-895.
-
(1976)
in Proc. IEEE Conf. on Decision and Control
, pp. 892-895
-
-
Kung, S.-Y.1
Kailath, T.2
Morf, M.3
-
20
-
-
0016988383
-
Generalized Bezoutian and Sylvester matrices in multivariable linear control.
-
Aug.
-
B. D. O. Anderson and e. I. Jury. “Generalized Bezoutian and Sylvester matrices in multivariable linear control.” IEEF. Trans. Autnmat. Conir., vol. AC-21. pp. 551 556, Aug. 1976.
-
(1976)
IEEF. Trans. Autnmat. Conir.
, vol.AC-21
, pp. 551-556
-
-
Anderson, B.D.O.1
Jury, E.I.2
-
21
-
-
0012031647
-
Lectures on matrices
-
Am. Math. Soc. Colloq. Publications.
-
J. H. M. Wedderburn. “Lectures on matrices,” Am. Math. Soc. Colloq. Publications. vol. 17, 1934.
-
(1934)
, vol.17
-
-
Wedderburn, J.H.M.1
-
22
-
-
0039521069
-
The matrix Cauchy index: Properties and applications
-
Dec.
-
R. R. Bitmead and B. D. O. Anderson. “The matrix Cauchy index: Properties and applications,” J. SIAM App. Math., pp. 655-672, Dec. 1977.
-
(1977)
J. SIAM App. Math.
, pp. 655-672
-
-
Bitmead, R.R.1
Anderson, B.D.O.2
-
23
-
-
84942007021
-
New tools in the matrix fraction description of linear systems
-
Patras, Greece
-
B. D. O. Anderson and R. R. Bitmead, “New tools in the matrix fraction description of linear systems,” Int. Conf. on Syst. Sci., Patras, Greece, 1976.
-
(1976)
Int. Conf. on Syst. Sci.
-
-
Anderson, B.D.O.1
Bitmead, R.R.2
-
24
-
-
9744232722
-
Another theorem relating Sylvester's matrix and the greatest common divisor
-
May
-
M. A. Laidacker, “Another theorem relating Sylvester's matrix and the greatest common divisor,” Math. Mag., pp. 126-128, May 1969.
-
(1969)
Math. Mag.
, pp. 126-128
-
-
Laidacker, M.A.1
-
26
-
-
0014707063
-
Bezoutiants, elimination and localization
-
Jan.
-
A. S. Householder, “Bezoutiants, elimination and localization,” SIAM Rev., pp. 73-78, Jan. 1970.
-
(1970)
SIAM Rev.
, pp. 73-78
-
-
Householder, A.S.1
|