-
1
-
-
84875710647
-
Complementary series
-
Apr.
-
M. J. E. Golay, “Complementary series,” IRE. Trans. Inform. Theory, vol. IT-7 pp. 82–87, Apr. 1961.
-
(1961)
IRE. Trans. Inform. Theory
, vol.IT-7
, pp. 82-87
-
-
Golay, M.J.E.1
-
2
-
-
0005992036
-
Quaternary codes for pulsed radar
-
June
-
G. R. Welti, “Quaternary codes for pulsed radar,” IEEE Trans. Inform. Theory, vol. IT-6, pp. 400–408, June 1960.
-
(1960)
IEEE Trans. Inform. Theory
, vol.IT-6
, pp. 400-408
-
-
Welti, G.R.1
-
3
-
-
84938009427
-
Ambiguity functions of complementary sequences
-
Jan.
-
R. Turyn, “Ambiguity functions of complementary sequences,” IEEE Trans. Inform. Theory, vol. 1T-9 pp. 46–47, Jan. 1963.
-
(1963)
IEEE Trans. Inform. Theory
, vol.1T-9
, pp. 46-47
-
-
Turyn, R.1
-
4
-
-
0000824240
-
Even shift orthogonal sequences
-
Mar.
-
Y. Taki, H. Miyakawa, M. Hatori, and S. Namba, “Even shift orthogonal sequences,” IEEE Trans. Inform. Theory, vol. IT-I5, pp. 295–300, Mar. 1969.
-
(1969)
IEEE Trans. Inform. Theory
, vol.IT-I5
, pp. 295-300
-
-
Taki, Y.1
Miyakawa, H.2
Hatori, M.3
Namba, S.4
-
5
-
-
0015401564
-
Complementary sets of sequences
-
Sept.
-
C. C. Tseng and C. I. Liu, “Complementary sets of sequences,” IEEE Trans. Inform. Theory, vol. IT-18, no. 5, pp. 644–651, Sept. 1972.
-
(1972)
IEEE Trans. Inform. Theory
, vol.IT-18
, Issue.5
, pp. 644-651
-
-
Tseng, C.C.1
Liu, C.I.2
-
6
-
-
1642597225
-
Complementary sequences of length 26
-
July
-
S. Jauregui, “Complementary sequences of length 26,” IEEE Trans. Inform. Theory, vol. IT-8, p. 323, July 1962.
-
(1962)
IEEE Trans. Inform. Theory
, vol.IT-8
, pp. 323
-
-
Jauregui, S.1
-
7
-
-
0001887421
-
Polyphase codes with good nonperiodic correlation properties
-
Jan.
-
R. L. Frank, “Polyphase codes with good nonperiodic correlation properties,” IEEE Trans. Inform. Theory, vol. IT-9, pp. 43–45, Jan. 1963.
-
(1963)
IEEE Trans. Inform. Theory
, vol.IT-9
, pp. 43-45
-
-
Frank, R.L.1
-
8
-
-
84938017753
-
Phase shift codes with good periodic correlation properties
-
Oct.
-
R. C. Heimiller, “Phase shift codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. IT-7, pp. 254–257, Oct. 1961.
-
(1961)
IEEE Trans. Inform. Theory
, vol.IT-7
, pp. 254-257
-
-
Heimiller, R.C.1
-
9
-
-
0015376109
-
Polyphase codes with good periodic correlation prop-erties
-
July
-
D. C. Chu, “Polyphase codes with good periodic correlation prop-erties,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 531–532, July 1972.
-
(1972)
IEEE Trans. Inform. Theory
, vol.IT-18
, pp. 531-532
-
-
Chu, D.C.1
-
11
-
-
0016102487
-
Uniform complex codes with low autocorrelation
-
Sept.
-
U. Somaini, “Uniform complex codes with low autocorrelation,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 689–691, Sept. 1974.
-
(1974)
IEEE Trans. Inform. Theory
, vol.IT-20
, pp. 689-691
-
-
Somaini, U.1
-
12
-
-
0003431488
-
Radar signals
-
New York: Academic
-
C. E. Cook and M. Bernfeld, “Radar signals,” New York: Academic, 1967.
-
(1967)
-
-
Cook, C.E.1
Bernfeld, M.2
-
14
-
-
0010768813
-
Sequences with small correlations” in
-
H. B. Mann, Ed. New York: Wiley
-
R. Turyn, “Sequences with small correlations” in Error Correcting Codes, H. B. Mann, Ed. New York: Wiley, 1968.
-
(1968)
Error Correcting Codes
-
-
Turyn, R.1
-
15
-
-
0016434792
-
Aperiodic correlation constraint on large binary sequence sets
-
Jan.
-
K. S. Schneider and R. S. Orr, “Aperiodic correlation constraint on large binary sequence sets,” IEEE Trans. Inform. Theory, vol. IT-2I, pp. 79–84, Jan. 1975.
-
(1975)
IEEE Trans. Inform. Theory
, vol.IT-2I
, pp. 79-84
-
-
Schneider, K.S.1
Orr, R.S.2
-
16
-
-
0003868214
-
Introduction to matrix computations
-
New York: Academic
-
G. W. Stewart, “Introduction to matrix computations,” New York: Academic, 1973.
-
(1973)
-
-
Stewart, G.W.1
-
17
-
-
1642597228
-
Golay sequences
-
New York: Springer-Verlag
-
T. H. Andres and R. G. Stanton, “Golay sequences,” in Combinatorial Mathematics, vol. 5. New York: Springer-Verlag, 1977, pp. 44–54.
-
(1977)
Combinatorial Mathematics
, vol.5
, pp. 44-54
-
-
Andres, T.H.1
Stanton, R.G.2
-
18
-
-
34250290410
-
There are no Golay complementary sequences of length 2·9'
-
M. Griffin, “There are no Golay complementary sequences of length 2·9’,” Aequationes Math., vol. 15, pp. 73–77.
-
Aequationes Math
, vol.15
, pp. 73-77
-
-
Griffin, M.1
|