-
1
-
-
0017553375
-
Criteria for determining if a high-order filter using saturation arithmetic is free of overflow oscillations
-
Nov.
-
D. Mitra, “Criteria for determining if a high-order filter using saturation arithmetic is free of overflow oscillations,” Bell Syst. Tech. J., vol. 56, pp. 1679–1699, Nov. 1977.
-
(1977)
Bell Syst. Tech. J.
, vol.56
, pp. 1679-1699
-
-
Mitra, D.1
-
2
-
-
0000100336
-
Period three implies chaos
-
Dec.
-
T. Y. Li and J. A. Yorke, “Period three implies chaos,” Amer. Math. Mon., vol. 82, pp. 985–992, Dec. 1975.
-
(1975)
Amer. Math. Mon.
, vol.82
, pp. 985-992
-
-
Li, T.Y.1
Yorke, J.A.2
-
3
-
-
0017481299
-
Large amplitude, self-sustained oscillations in difference equations which describe digital filter sections using saturation arithmetic
-
Apr.
-
D. Mitra, “Large amplitude, self-sustained oscillations in difference equations which describe digital filter sections using saturation arithmetic,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25, pp. 134–143, Apr. 1977.
-
(1977)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-25
, pp. 134-143
-
-
Mitra, D.1
-
4
-
-
84924197945
-
An analysis of roundoff noise in digital filters
-
dissertation, Stevens Institute of Tech., Hoboken, NJ
-
L. B. Jackson, “An analysis of roundoff noise in digital filters,” dissertation, Stevens Institute of Tech., Hoboken, NJ, 1969.
-
(1969)
-
-
Jackson, L.B.1
-
5
-
-
0015160444
-
Limit-cycle oscillations in digital filters
-
Nov.
-
S. R. Parker and S. F. Hess, “Limit-cycle oscillations in digital filters,” IEEE Trans. Circuit Theory, vol. CT-18, pp. 687–697, Nov. 1971.
-
(1971)
IEEE Trans. Circuit Theory
, vol.CT-18
, pp. 687-697
-
-
Parker, S.R.1
Hess, S.F.2
-
6
-
-
0014601965
-
Overflow oscillations in digital filters
-
P. M. Ebert, J. E. Mazo, and M. G. Taylor, “Overflow oscillations in digital filters,” Bell Syst. Tech. J., vol. 48, pp. 2999–3020, 1969.
-
(1969)
Bell Syst. Tech. J.
, vol.48
, pp. 2999-3020
-
-
Ebert, P.M.1
Mazo, J.E.2
Taylor, M.G.3
-
8
-
-
0015368425
-
Limit cycles due to adder overflow in digital filters
-
A. N. Willson, Jr., “Limit cycles due to adder overflow in digital filters,” IEEE Trans. Circuit Theory, vol. CT-19, pp. 342–346, 1972.
-
(1972)
IEEE Trans. Circuit Theory
, vol.CT-19
, pp. 342-346
-
-
Willson, A.N.1
-
9
-
-
84937658165
-
On the stability of higher order digital filters which use saturation arithmetic
-
to be published
-
J. E. Mazo, “On the stability of higher order digital filters which use saturation arithmetic,” to be published.
-
-
-
Mazo, J.E.1
-
11
-
-
0016485665
-
Frequency domain criteria for the absence of zero-input limit cycles in nonlinear discrete-time systems, with applications to digital filters
-
Mar.
-
T. A. C. M. Claasen, W. F. G. Mecklenbraüker, and J. B. H. Peek, “Frequency domain criteria for the absence of zero-input limit cycles in nonlinear discrete-time systems, with applications to digital filters,” IEEE Trans. Circuits and Systems, vol. CAS-22, pp. 232–239, Mar. 1975.
-
(1975)
IEEE Trans. Circuits and Systems
, vol.CAS-22
, pp. 232-239
-
-
Claasen, T.A.C.M.1
Mecklenbraüker, W.F.G.2
Peek, J.B.H.3
-
12
-
-
0000302024
-
Lyapunov functions for the problem of Lurie in automatic controls
-
R. E. Kalman, “Lyapunov functions for the problem of Lurie in automatic controls,” Proc. Nat. Acad. Sci., U.S., vol. 49, pp. 201–205, 1963.
-
(1963)
Proc. Nat. Acad. Sci., U.S
, vol.49
, pp. 201-205
-
-
Kalman, R.E.1
-
13
-
-
0000595523
-
Sur la stabilité absolue d'un systeme d'equations aux differénces finies
-
G. Szego and R. E. Kalman, “Sur la stabilité absolue d'un systeme d'equations aux differénces finies,” Comptes Rendus, Académie des Sciences, vol. 257, pp. 388–390, 1963.
-
(1963)
Comptes Rendus, Académie des Sciences
, vol.257
, pp. 388-390
-
-
Szego, G.1
Kalman, R.E.2
-
14
-
-
0000771130
-
Solution of certain matrix inequalities occurring in the theory of automatic controls
-
V. A. Yacubovich, “Solution of certain matrix inequalities occurring in the theory of automatic controls,” Dokl. Akad. Nauk SSSR, vol. 143, pp. 1304–1307, 1962.
-
(1962)
Dokl. Akad. Nauk SSSR
, vol.143
, pp. 1304-1307
-
-
Yacubovich, V.A.1
-
15
-
-
0001328414
-
Absolute stability of nonlinear systems of automatic control
-
V. M. Popov, “Absolute stability of nonlinear systems of automatic control,” Automat. Telemekh., vol. 22, pp. 961–979, 1961.
-
(1961)
Automat. Telemekh.
, vol.22
, pp. 961-979
-
-
Popov, V.M.1
-
18
-
-
84937648198
-
Sufficient conditions for the absence of auto-oscillations in pulse systems
-
June
-
A. I. Barkin, “Sufficient conditions for the absence of auto-oscillations in pulse systems,” Automat. Remote Contr., vol. 31, pp. 942–946, June 1970.
-
(1970)
Automat. Remote Contr.
, vol.31
, pp. 942-946
-
-
Barkin, A.I.1
-
19
-
-
84866869226
-
A combined frequency-time domain stability criterion for autonomous continuous systems
-
July
-
R. P. O'Shea, “A combined frequency-time domain stability criterion for autonomous continuous systems,” IEEE Trans. Automat. Contr., vol. AC-11, pp. 477–484, July 1966.
-
(1966)
IEEE Trans. Automat. Contr.
, vol.AC-11
, pp. 477-484
-
-
O'Shea, R.P.1
-
20
-
-
84939748144
-
Frequency domain stability criteria—Part I
-
July
-
R. W. Brockett and J. L. Willems, “Frequency domain stability criteria—Part I,” IEEE Trans. Automat. Contr., vol. AC-10, pp. 255–261, July 1965.
-
(1965)
IEEE Trans. Automat. Contr.
, vol.AC-10
, pp. 255-261
-
-
Brockett, R.W.1
Willems, J.L.2
-
21
-
-
0003227960
-
The absolute stability of systems with many nonlinearities
-
June
-
E. I. Jury and B. W. Lee, “The absolute stability of systems with many nonlinearities,” Automat. Remote Contr., vol. 26, pp. 943–961, June 1965.
-
(1965)
Automat. Remote Contr.
, vol.26
, pp. 943-961
-
-
Jury, E.I.1
Lee, B.W.2
-
22
-
-
0017534761
-
On parasitic oscillations in digital filters under looped conditions
-
Sept.
-
A. Fettweis and K. Meerkötter, “On parasitic oscillations in digital filters under looped conditions,” IEEE Trans. Circuits Syst., vol. CAS-24, pp. 475–481, Sept. 1977.
-
(1977)
IEEE Trans. Circuits Syst.
, vol.CAS-24
, pp. 475-481
-
-
Fettweis, A.1
Meerkötter, K.2
|