메뉴 건너뛰기




Volumn C-25, Issue 2, 1976, Pages 165-171

Statistical Estimation of the Intrinsic Dimensionality of a Noisy Signal Collection

(1)  Trunk, Gerard V a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords

DECISION THEORY AND ANALYSIS;

EID: 0016917031     PISSN: 00189340     EISSN: None     Source Type: Journal    
DOI: 10.1109/TC.1976.5009231     Document Type: Article
Times cited : (38)

References (18)
  • 3
    • 0015286905 scopus 로고
    • Parameter identification using intrinsic dimensionality
    • Jan.
    • G.V. Trunk, “Parameter identification using intrinsic dimensionality,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 126–133, Jan. 1972.
    • (1972) IEEE Trans. Inform. Theory , vol.IT-18 , pp. 126-133
    • Trunk, G.V.1
  • 4
    • 84939064619 scopus 로고
    • Intrinsic dimensionality considerations in active black box system identification
    • Western Periodicals
    • J. Vidal and D. Schwartzmann, “Intrinsic dimensionality considerations in active black box system identification,” in Proc. 5th Hawaii Int. Conf. Syst. Sci., Western Periodicals 1972, pp. 255–257.
    • (1972) Proc. 5th Hawaii Int. Conf. Syst. Sci. , pp. 255-257
    • Vidal, J.1    Schwartzmann, D.2
  • 5
    • 34250920725 scopus 로고
    • The analysis of proximities: multidimensional scaling with an unknown distance function I
    • R.N. Shepard, “The analysis of proximities: multidimensional scaling with an unknown distance function I,” Psychometrika, vol. 27, pp. 125–140, 1962.
    • (1962) Psychometrika , vol.27 , pp. 125-140
    • Shepard, R.N.1
  • 6
    • 34250920725 scopus 로고
    • The analysis of proximities: multidimensional scaling with an unknown distance function II
    • R.N. Shepard, “The analysis of proximities: multidimensional scaling with an unknown distance function II,” Psychometrika, vol. 27, pp. 219–246, 1962.
    • (1962) Psychometrika , vol.27 , pp. 219-246
    • Shepard, R.N.1
  • 7
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • Mar.
    • J.B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika, vol. 29, pp. 1–27, Mar. 1964.
    • (1964) Psychometrika , vol.29 , pp. 1-27
    • Kruskal, J.B.1
  • 8
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: a numerical method
    • June
    • R.N. Shepard, “Nonmetric multidimensional scaling: a numerical method,” Psychometrika, vol. 29, pp. 115–129, June 1964.
    • (1964) Psychometrika , vol.29 , pp. 115-129
    • Shepard, R.N.1
  • 9
    • 84939357167 scopus 로고
    • Parametric representation of nonlinear data structures
    • P.R. Krishnaiah Ed. New York: Academic
    • J.D. Carroll and R.N. Shepard, “Parametric representation of nonlinear data structures,” in Proc. Int. Symp. Multivariate Analysis, P.R. Krishnaiah Ed. New York: Academic, 1966.
    • (1966) Proc. Int. Symp. Multivariate Analysis
    • Carroll, J.D.1    Shepard, R.N.2
  • 10
    • 0014563685 scopus 로고
    • The intrinsic dimensionality of signal collections
    • Sept.
    • R.S. Bennett, “The intrinsic dimensionality of signal collections,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 517–525, Sept. 1969.
    • (1969) IEEE Trans. Inform. Theory , vol.IT-15 , pp. 517-525
    • Bennett, R.S.1
  • 11
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • May
    • J.W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Trans. Comput., vol. C-18, pp. 401–409, May 1969.
    • (1969) IEEE Trans. Comput. , vol.C-18 , pp. 401-409
    • Sammon, J.W.1
  • 12
    • 0016028877 scopus 로고
    • Nonlinear intrinsic dimensionality computations
    • Feb.
    • C.K. Chen and H.C. Andrews, “Nonlinear intrinsic dimensionality computations,” IEEE Trans. Comput. (Corresp.), vol. C-23, pp. 178–184, Feb. 1974.
    • (1974) IEEE Trans. Comput. (Corresp.) , vol.C-23 , pp. 178-184
    • Chen, C.K.1    Andrews, H.C.2
  • 13
    • 0016652684 scopus 로고
    • An algorithm for determining the topological dimensionality and structure of point clusters
    • Dec.
    • D. Schwartzmann and J. Vidal, “An algorithm for determining the topological dimensionality and structure of point clusters,” IEEE Trans. Comput., vol. C-24, pp. 1175–1183, Dec. 1975.
    • (1975) IEEE Trans. Comput. , vol.C-24 , pp. 1175-1183
    • Schwartzmann, D.1    Vidal, J.2
  • 14
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • Feb.
    • K. Fukunaga and D. Olsen, “An algorithm for finding intrinsic dimensionality of data,” IEEE Trans. Comput., vol. C-20, pp. 176–183, Feb. 1971.
    • (1971) IEEE Trans. Comput. , vol.C-20 , pp. 176-183
    • Fukunaga, K.1    Olsen, D.2
  • 15
    • 0011369563 scopus 로고
    • Representation and analysis of signals-Part XXIV: Statistical estimation of intrinsic dimensionality and parameter identification
    • G.V. Trunk, “Representation and analysis of signals-Part XXIV: Statistical estimation of intrinsic dimensionality and parameter identification,” Gen. Syst., vol. 13, pp. 49–76, 1968.
    • (1968) Gen. Syst. , vol.13 , pp. 49-76
    • Trunk, G.V.1
  • 16
    • 0346013496 scopus 로고
    • Statistical estimation of the intrinsic dimensionality of data collections
    • G.V. Trunk, “Statistical estimation of the intrinsic dimensionality of data collections,” Inform. Contr., vol. 12, pp. 508–525, 1968.
    • (1968) Inform. Contr. , vol.12 , pp. 508-525
    • Trunk, G.V.1
  • 18
    • 84937349081 scopus 로고
    • Transient synthesis in the time domain
    • Sept.
    • W.H. Kautz, “Transient synthesis in the time domain,” IRE Trans. Circuit Theory, vol. CT-1, pp. 29–39, Sept. 1954.
    • (1954) IRE Trans. Circuit Theory , vol.CT-1 , pp. 29-39
    • Kautz, W.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.