-
2
-
-
84928927939
-
-
The Johns Hopkins Univ., Baltimore, MD, Rep. 163, June
-
R. Bennett, “Representation and analysis of signals-Part XXI: The intrinsic dimensionality of signal collections,” The Johns Hopkins Univ., Baltimore, MD, Rep. 163, June 1965.
-
(1965)
Representation and analysis of signals-Part XXI: The intrinsic dimensionality of signal collections
-
-
Bennett, R.1
-
3
-
-
0015286905
-
Parameter identification using intrinsic dimensionality
-
Jan.
-
G.V. Trunk, “Parameter identification using intrinsic dimensionality,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 126–133, Jan. 1972.
-
(1972)
IEEE Trans. Inform. Theory
, vol.IT-18
, pp. 126-133
-
-
Trunk, G.V.1
-
4
-
-
84939064619
-
Intrinsic dimensionality considerations in active black box system identification
-
Western Periodicals
-
J. Vidal and D. Schwartzmann, “Intrinsic dimensionality considerations in active black box system identification,” in Proc. 5th Hawaii Int. Conf. Syst. Sci., Western Periodicals 1972, pp. 255–257.
-
(1972)
Proc. 5th Hawaii Int. Conf. Syst. Sci.
, pp. 255-257
-
-
Vidal, J.1
Schwartzmann, D.2
-
5
-
-
34250920725
-
The analysis of proximities: multidimensional scaling with an unknown distance function I
-
R.N. Shepard, “The analysis of proximities: multidimensional scaling with an unknown distance function I,” Psychometrika, vol. 27, pp. 125–140, 1962.
-
(1962)
Psychometrika
, vol.27
, pp. 125-140
-
-
Shepard, R.N.1
-
6
-
-
34250920725
-
The analysis of proximities: multidimensional scaling with an unknown distance function II
-
R.N. Shepard, “The analysis of proximities: multidimensional scaling with an unknown distance function II,” Psychometrika, vol. 27, pp. 219–246, 1962.
-
(1962)
Psychometrika
, vol.27
, pp. 219-246
-
-
Shepard, R.N.1
-
7
-
-
0041654220
-
Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
-
Mar.
-
J.B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika, vol. 29, pp. 1–27, Mar. 1964.
-
(1964)
Psychometrika
, vol.29
, pp. 1-27
-
-
Kruskal, J.B.1
-
8
-
-
24944533365
-
Nonmetric multidimensional scaling: a numerical method
-
June
-
R.N. Shepard, “Nonmetric multidimensional scaling: a numerical method,” Psychometrika, vol. 29, pp. 115–129, June 1964.
-
(1964)
Psychometrika
, vol.29
, pp. 115-129
-
-
Shepard, R.N.1
-
9
-
-
84939357167
-
Parametric representation of nonlinear data structures
-
P.R. Krishnaiah Ed. New York: Academic
-
J.D. Carroll and R.N. Shepard, “Parametric representation of nonlinear data structures,” in Proc. Int. Symp. Multivariate Analysis, P.R. Krishnaiah Ed. New York: Academic, 1966.
-
(1966)
Proc. Int. Symp. Multivariate Analysis
-
-
Carroll, J.D.1
Shepard, R.N.2
-
10
-
-
0014563685
-
The intrinsic dimensionality of signal collections
-
Sept.
-
R.S. Bennett, “The intrinsic dimensionality of signal collections,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 517–525, Sept. 1969.
-
(1969)
IEEE Trans. Inform. Theory
, vol.IT-15
, pp. 517-525
-
-
Bennett, R.S.1
-
11
-
-
84887006810
-
A nonlinear mapping for data structure analysis
-
May
-
J.W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Trans. Comput., vol. C-18, pp. 401–409, May 1969.
-
(1969)
IEEE Trans. Comput.
, vol.C-18
, pp. 401-409
-
-
Sammon, J.W.1
-
12
-
-
0016028877
-
Nonlinear intrinsic dimensionality computations
-
Feb.
-
C.K. Chen and H.C. Andrews, “Nonlinear intrinsic dimensionality computations,” IEEE Trans. Comput. (Corresp.), vol. C-23, pp. 178–184, Feb. 1974.
-
(1974)
IEEE Trans. Comput. (Corresp.)
, vol.C-23
, pp. 178-184
-
-
Chen, C.K.1
Andrews, H.C.2
-
13
-
-
0016652684
-
An algorithm for determining the topological dimensionality and structure of point clusters
-
Dec.
-
D. Schwartzmann and J. Vidal, “An algorithm for determining the topological dimensionality and structure of point clusters,” IEEE Trans. Comput., vol. C-24, pp. 1175–1183, Dec. 1975.
-
(1975)
IEEE Trans. Comput.
, vol.C-24
, pp. 1175-1183
-
-
Schwartzmann, D.1
Vidal, J.2
-
14
-
-
0015011520
-
An algorithm for finding intrinsic dimensionality of data
-
Feb.
-
K. Fukunaga and D. Olsen, “An algorithm for finding intrinsic dimensionality of data,” IEEE Trans. Comput., vol. C-20, pp. 176–183, Feb. 1971.
-
(1971)
IEEE Trans. Comput.
, vol.C-20
, pp. 176-183
-
-
Fukunaga, K.1
Olsen, D.2
-
15
-
-
0011369563
-
Representation and analysis of signals-Part XXIV: Statistical estimation of intrinsic dimensionality and parameter identification
-
G.V. Trunk, “Representation and analysis of signals-Part XXIV: Statistical estimation of intrinsic dimensionality and parameter identification,” Gen. Syst., vol. 13, pp. 49–76, 1968.
-
(1968)
Gen. Syst.
, vol.13
, pp. 49-76
-
-
Trunk, G.V.1
-
16
-
-
0346013496
-
Statistical estimation of the intrinsic dimensionality of data collections
-
G.V. Trunk, “Statistical estimation of the intrinsic dimensionality of data collections,” Inform. Contr., vol. 12, pp. 508–525, 1968.
-
(1968)
Inform. Contr.
, vol.12
, pp. 508-525
-
-
Trunk, G.V.1
-
18
-
-
84937349081
-
Transient synthesis in the time domain
-
Sept.
-
W.H. Kautz, “Transient synthesis in the time domain,” IRE Trans. Circuit Theory, vol. CT-1, pp. 29–39, Sept. 1954.
-
(1954)
IRE Trans. Circuit Theory
, vol.CT-1
, pp. 29-39
-
-
Kautz, W.H.1
|