-
1
-
-
0000288553
-
Timedomain approximation by iterative methods
-
Dec.
-
L. E. McBride, Jr., H. W. Schaefgen, and K. Steiglitz, “Timedomain approximation by iterative methods,” IEEE Trans. Circuit Theory, vol. CT-13, pp. 381–387, Dec. 1966.
-
(1966)
IEEE Trans. Circuit Theory
, vol.CT-13
, pp. 381-387
-
-
McBride, L.E.1
Schaefgen, H.W.2
Steiglitz, K.3
-
2
-
-
84921127325
-
Best least-squares representation of signals by exponentials
-
Aug.
-
R. N. McDonough and W. H. Huggins, “Best least-squares representation of signals by exponentials,” IEEE Trans. Automat. Contr., vol. AC-13, pp. 408–412, Aug. 1968.
-
(1968)
IEEE Trans. Automat. Contr.
, vol.AC-13
, pp. 408-412
-
-
McDonough, R.N.1
Huggins, W.H.2
-
3
-
-
0014737864
-
An iterative solution to the equations of Aigrain and Williams
-
(Corresp.), Feb.
-
G. Miller, “An iterative solution to the equations of Aigrain and Williams,” IEEE Trans. Circuit Theory (Corresp.), vol. CT-17, pp. 155–158, Feb. 1970.
-
(1970)
IEEE Trans. Circuit Theory
, vol.CT-17
, pp. 155-158
-
-
Miller, G.1
-
5
-
-
84937740613
-
L2-approximation in the time domain
-
M.Sc. thesis, Queen's Univ., Kingston, Ont., Canada, 1970
-
M. H. Rahman, “L2-approximation in the time domain,” M.Sc. thesis, Queen's Univ., Kingston, Ont., Canada, 1970.
-
(1970)
-
-
Rahman, M.H.1
-
6
-
-
85163152800
-
Synthesis of electrical networks by means of Fourier transforms of Laguerre's functions
-
Y. W. Lee, “Synthesis of electrical networks by means of Fourier transforms of Laguerre's functions,” J. Math. Phys., vol. 11, pp. 83–113, 1932.
-
(1932)
J. Math. Phys.
, vol.11
, pp. 83-113
-
-
Lee, Y.W.1
-
7
-
-
0041500570
-
Synthesis of n-reactance networks for desired transient response
-
June
-
P. R. Aigrain and E. M. Williams, “Synthesis of n-reactance networks for desired transient response,” J. Appl. Phys., vol. 20, pp. 597–600, June 1949.
-
(1949)
J. Appl. Phys.
, vol.20
, pp. 597-600
-
-
Aigrain, P.R.1
Williams, E.M.2
-
8
-
-
84937349081
-
Transient synthesis in the time domain
-
Sept.
-
W. H. Kautz, “Transient synthesis in the time domain,” IRE Trans. Circuit Theory, vol. CT-1, pp. 29–39, Sept. 1954.
-
(1954)
IRE Trans. Circuit Theory
, vol.CT-1
, pp. 29-39
-
-
Kautz, W.H.1
-
9
-
-
0000351209
-
Signal theory
-
Dec.
-
W. H. Huggins, “Signal theory,” IRE Trans. Circuit Theory, vol. CT-3, pp. 210–216, Dec. 1956.
-
(1956)
IRE Trans. Circuit Theory
, vol.CT-3
, pp. 210-216
-
-
Huggins, W.H.1
-
13
-
-
84937740785
-
Closed form L2 exponential approximation
-
Ph.D. dissertation, Dep. Elec. Eng., Queen's Univ, Kingston, Ont., Canada
-
R. K. Harman, “Closed form L2 exponential approximation,” Ph.D. dissertation, Dep. Elec. Eng., Queen's Univ, Kingston, Ont., Canada, 1972.
-
(1972)
-
-
Harman, R.K.1
-
14
-
-
84913107392
-
Closed-form inversion of the Gram matrix arising in certain least-squares problems
-
(Corresp.), May
-
G. Miller, “Closed-form inversion of the Gram matrix arising in certain least-squares problems,” IEEE Trans. Circuit Theory (Corresp.), vol. CT-16, pp. 237–240, May 1969.
-
(1969)
IEEE Trans. Circuit Theory
, vol.CT-16
, pp. 237-240
-
-
Miller, G.1
-
15
-
-
70349408001
-
A unified approach to the synthesis of orthonormal exponential functions useful in systems analysis
-
Aug.
-
J. M. Mendel, “A unified approach to the synthesis of orthonormal exponential functions useful in systems analysis,” IEEE Trans. Syst. Sci. Cybern., vol. SSC-2, pp. 54–62, Aug. 1966.
-
(1966)
IEEE Trans. Syst. Sci. Cybern.
, vol.SSC-2
, pp. 54-62
-
-
Mendel, J.M.1
|