-
1
-
-
84939007907
-
An innovations approach to least-squares estimation-Part I: Linear filtering in additive white noise
-
Dec.
-
T. Kailath, “An innovations approach to least-squares estimation-Part I: Linear filtering in additive white noise,” IEEE Trans. Automat. Contr., vol. AC-13, Dec. 1968, pp. 646–654.
-
(1968)
IEEE Trans. Automat. Contr.
, vol.13 AC
, pp. 646-654
-
-
Kailath, T.1
-
2
-
-
84941526864
-
An innovations approach to least-squares estimation-Part II: Linear smoothing in additive white noise
-
Dec.
-
T. Kailath and P. Frost, “An innovations approach to least-squares estimation-Part II: Linear smoothing in additive white noise,” IEEE Trans. Automat. Contr., vol. AC-13, Dec. 1968, pp. 655–660.
-
(1968)
IEEE Trans. Automat. Contr.
, vol.13 AC
, pp. 655-660
-
-
Kailath, T.1
Frost, P.2
-
3
-
-
0011867249
-
Wiener’s contributions to generalized harmonic analysis, prediction theory and filtering theory
-
pt. II, Jan.
-
P. Masani, “Wiener’s contributions to generalized harmonic analysis, prediction theory and filtering theory,” Bull. Amer. Math. Soc., vol. 72, pt. II, Jan. 1966, pp. 73–125.
-
(1966)
Bull. Amer. Math. Soc.
, vol.72
, pp. 73-125
-
-
Masani, P.1
-
6
-
-
0001264119
-
A general likelihood ratio formula for random signals in Gaussian noise
-
May
-
T. Kailath, “A general likelihood ratio formula for random signals in Gaussian noise,” IEEE Trans. Inform. Theory, vol. IT-15, May 1969, pp. 350–361.
-
(1969)
IEEE Trans. Inform. Theory
, vol.15 IT
, pp. 350-361
-
-
Kailath, T.1
-
8
-
-
0001355394
-
Conditional Markov process theory
-
R.L. Stratonovich, “Conditional Markov process theory,” Theory Prob. Appl. (USSR), vol. 5, 1960, pp. 156–178.
-
(1960)
Theory Prob. Appl. (USSR)
, vol.5
, pp. 156-178
-
-
Stratonovich, R.L.1
-
9
-
-
0001157746
-
On differential equations satisfied by conditional probability densities of Markov processes
-
H.J. Kushner, “On differential equations satisfied by conditional probability densities of Markov processes,” SIAM J. Contr., vol. 2, 1964, pp. 106–119.
-
(1964)
SIAM J. Contr.
, vol.2
, pp. 106-119
-
-
Kushner, H.J.1
-
10
-
-
0009095704
-
On the dynamical equations of conditional probability density functions, with applications to optimal stochastic control theory
-
H.J. Kushner, “On the dynamical equations of conditional probability density functions, with applications to optimal stochastic control theory.” J. Math. Anal. Appl., vol. 8, 1964, pp. 332–344.
-
(1964)
J. Math. Anal. Appl.
, vol.8
, pp. 332-344
-
-
Kushner, H.J.1
-
11
-
-
0001473054
-
Some applications of stochastic differential equations to optimal nonlinear filtering
-
W.M. Wonham, “Some applications of stochastic differential equations to optimal nonlinear filtering,” SIAM J. Contr., vol. 2, 1965, pp. 347–369.
-
(1965)
SIAM J. Contr.
, vol.2
, pp. 347-369
-
-
Wonham, W.M.1
-
15
-
-
0010162858
-
On stochastic equations in the theory of conditional Markov processes:
-
A.N. Shiryaev, “On stochastic equations in the theory of conditional Markov processes:” Theory Prob. Appl. (USSR), vol. 11, 1966, pp. 179–184.
-
(1966)
Theory Prob. Appl. (USSR)
, vol.11
, pp. 179-184
-
-
Shiryaev, A.N.1
-
16
-
-
84910944090
-
Stochastic equation of nonlinear filtering of Markovian jump process
-
A.N. Shiryaev, “Stochastic equation of nonlinear filtering of Markovian jump process.” Problems of Information Transmission, vol. 2. 1966. pp. 1–18.
-
(1966)
Problems of Information Transmission
, vol.2
, pp. 1-18
-
-
Shiryaev, A.N.1
-
17
-
-
84914972613
-
nonlinear interpolation of components of Markov diffusion processes
-
R. Lipster and A.N. Shiryaev, “nonlinear interpolation of components of Markov diffusion processes.” Theory Prob. Appl. (USSR). vol. 13, no. 4, 1968.
-
(1968)
Theory Prob. Appl. (USSR).
, vol.13
, Issue.4
-
-
Lipster, R.1
Shiryaev, A.N.2
-
19
-
-
0001702452
-
On the optimal filtering of diffusion processes
-
M. Zakai, “On the optimal filtering of diffusion processes.” Z. Wahrscheinlichkeits Theorie verw. Geb., vol. 11. 1969. pp. 230–243.
-
(1969)
Z. Wahrscheinlichkeits Theorie verw. Geb.
, vol.11
, pp. 230-243
-
-
Zakai, M.1
-
20
-
-
0001498426
-
Estimation of stochastic systems: Arbitrary system process with additive white noise observation errors
-
G. Kallianpur and C. Striebel, “Estimation of stochastic systems: Arbitrary system process with additive white noise observation errors.” Ann. Math. Statist., vol. 39, 1968. pp. 785–801.
-
(1968)
Ann. Math. Statist.
, vol.39
, pp. 785-801
-
-
Kallianpur, G.1
Striebel, C.2
-
21
-
-
33747358454
-
Stochastic differential equations occurring in the estimation of continuous-parameter stochastic processes
-
G. Kallianpur, “Stochastic differential equations occurring in the estimation of continuous-parameter stochastic processes,” Theory Prob. Appl. (USSR). vol. 14, 1969, pp. 567–594.
-
(1969)
Theory Prob. Appl. (USSR).
, vol.14
, pp. 567-594
-
-
Kallianpur, G.1
-
24
-
-
0014974580
-
Nonlinear interpolation
-
Jan.
-
G.M. Lee, “Nonlinear interpolation,” IEEE Trans. Inform. Theory, vol. IT-17, Jan. 1971, pp. 45–49.
-
(1971)
IEEE Trans. Inform. Theory
, vol.17 IT
, pp. 45-49
-
-
Lee, G.M.1
-
25
-
-
33646541822
-
Conditions for one-to-one correspondence between an observation process and its innovation
-
Imperial College, London. Tech. Rep. 1
-
J.M.C. Clark, “Conditions for one-to-one correspondence between an observation process and its innovation,” Center for Computing and Automation, Imperial College, London. Tech. Rep. 1, 1969.
-
(1969)
Center for Computing and Automation
-
-
Clark, J.M.C.1
-
28
-
-
84972503912
-
Multiple Wiener integral
-
May
-
K. Itô, “Multiple Wiener integral,” J. Math. Soc. Japan, vol. 3. May 1951.
-
(1951)
J. Math. Soc. Japan
, vol.3
-
-
Itô, K.1
-
30
-
-
84972562211
-
Representation of Gaussian processes equivalent to Wiener processes
-
M. Hitsuda, “Representation of Gaussian processes equivalent to Wiener processes,” Osaka J. Math., vol. 5, 1968, pp. 299–312.
-
(1968)
Osaka J. Math.
, vol.5
, pp. 299-312
-
-
Hitsuda, M.1
-
31
-
-
84909512765
-
Likelihood ratios for Gaussian processes
-
May
-
T. Kailath, “Likelihood ratios for Gaussian processes.” IEEE Trans. Inform. Theory, vol. IT-16, May 1970. pp. 276–288.
-
(1970)
IEEE Trans. Inform. Theory
, vol.16 IT
, pp. 276-288
-
-
Kailath, T.1
-
32
-
-
0000855448
-
The representation of functionals of Brownian motion by stochastic integrals
-
J.M.C. Clark, “The representation of functionals of Brownian motion by stochastic integrals,” Ann. Math. Statist., vo l. 4, 1970. pp. 1282–1295.
-
(1970)
Ann. Math. Statist.
, vol.4
, pp. 1282-1295
-
-
Clark, J.M.C.1
-
33
-
-
84944996054
-
The innovations process and its application to nonlinear estimation and detection of signals in additive white noise
-
Oct.
-
P. Frost, “The innovations process and its application to nonlinear estimation and detection of signals in additive white noise.” Proc. UMR-Mervin J. Kelly J. Kelly Communications Conf., Oct. 1970.
-
(1970)
Proc. UMR-Mervin J. Kelly J. Kelly Communications Conf.
-
-
Frost, P.1
-
34
-
-
33747265351
-
The structure of Radon-Nikodym derivatives with respect to Wiener and related measures
-
June to be published.
-
T. Kailath, “The structure of Radon-Nikodym derivatives with respect to Wiener and related measures,” Ann. Math, Statist., vol. 6, June 1971, to be published.
-
(1971)
Ann. Math, Statist.
, vol.6
-
-
Kailath, T.1
-
36
-
-
84944983069
-
An innovations approach to least squares estimation-Part IV: Recursive estimation given the covariance function
-
to be published.
-
T. Kailath and R. Geesey, “An innovations approach to least squares estimation-Part IV: Recursive estimation given the covariance function,” IEEE Trans. Automat. Contr., to be published.
-
IEEE Trans. Automat. Contr.
-
-
Kailath, T.1
Geesey, R.2
-
37
-
-
0014701042
-
The innovations approach to detection and estimation theory
-
May
-
T. Kailath, “The innovations approach to detection and estimation theory,” Proc. IEEE, vol. 58, May 1970. pp. 680–695.
-
(1970)
Proc. IEEE
, vol.58
, pp. 680-695
-
-
Kailath, T.1
|