-
1
-
-
85037877576
-
-
Hermann Grabert and Michel H. Devoret, Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures (Plenum Press, New York, 1992).
-
Hermann Grabert and Michel H. Devoret, Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures (Plenum Press, New York, 1992).
-
-
-
-
3
-
-
85037877636
-
-
T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zweger, Quantum Transport and Dissipation (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).
-
T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zweger, Quantum Transport and Dissipation (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998).
-
-
-
-
5
-
-
0024628164
-
-
K. K. Likharev, N. S. Bakhalov, G. S. Kazacha, and S. I. Serdyukova, IEEE Trans. Magn. 25, 1436 (1989).
-
(1989)
IEEE Trans. Magn.
, vol.25
, pp. 1436
-
-
Likharev, K.K.1
Bakhalov, N.S.2
Kazacha, G.S.3
Serdyukova, S.I.4
-
10
-
-
30244480008
-
-
P. Delsing, T. Claeson, K. K. Likharev, and L. S. Kuzmin, Phys. Rev. B 42, 7439 (1990).
-
(1990)
Phys. Rev. B
, vol.42
, pp. 7439
-
-
Delsing, P.1
Claeson, T.2
Likharev, K.K.3
Kuzmin, L.S.4
-
12
-
-
34249926288
-
-
I. P. Kouwenhoven, N. C. van der Vaart, A. T. Johnson, W. Kool, C. J. P. M. Harmans, I. G. Williamson, A. A. M. Staring, and C. T. Foxon, Z. Phys. B 85, 367 (1991).
-
(1991)
Z. Phys. B
, vol.85
, pp. 367
-
-
Kouwenhoven, I.P.1
van der Vaart, N.C.2
Johnson, A.T.3
Kool, W.4
Harmans, C.J.P.M.5
Williamson, I.G.6
Staring, A.A.M.7
Foxon, C.T.8
-
13
-
-
12044254174
-
-
L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 1626
-
-
Kouwenhoven, L.P.1
Johnson, A.T.2
van der Vaart, N.C.3
Harmans, C.J.P.M.4
Foxon, T.5
-
15
-
-
3142623830
-
-
D. C. Glattli, C. Pasquier, U. Meirav, F. I. B. Williams, Y. Jin, and E. Etienne, Z. Phys. B 85, 375 (1991).
-
(1991)
Z. Phys. B
, vol.85
, pp. 375
-
-
Glattli, D.C.1
Pasquier, C.2
Meirav, U.3
Williams, F.I.B.4
Jin, Y.5
Etienne, E.6
-
16
-
-
0000831872
-
-
L. R. C. Fonseca, A. N. Korotkov, K. K. Likharev, and A. A. Odintsov, J. Appl. Phys. 78, 3238 (1995).
-
(1995)
J. Appl. Phys.
, vol.78
, pp. 3238
-
-
Fonseca, L.R.C.1
Korotkov, A.N.2
Likharev, K.K.3
Odintsov, A.A.4
-
17
-
-
35949006377
-
-
F. Hofmann, T. Heinzel, D. A. Wharam, J. P. Kotthaus, G. Böhm, W. Klein, G. Tränkle, and G. Weimann, Phys. Rev. B 51, 13 872 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 13 872
-
-
Hofmann, F.1
Heinzel, T.2
Wharam, D.A.3
Kotthaus, J.P.4
Böhm, G.5
Klein, W.6
Tränkle, G.7
Weimann, G.8
-
18
-
-
84956087854
-
-
H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M. H. Devoret, Europhys. Lett. 17, 249 (1992).
-
(1992)
Europhys. Lett.
, vol.17
, pp. 249
-
-
Pothier, H.1
Lafarge, P.2
Urbina, C.3
Esteve, D.4
Devoret, M.H.5
-
19
-
-
5844278963
-
-
Shingo Katsumoto, Naokatsu Sano, and Shun-ichi Kobayashi, Jpn. J. Appl. Phys., Part 2 31, 759 (1992).
-
(1992)
Jpn. J. Appl. Phys., Part 2
, vol.31
, pp. 759
-
-
-
21
-
-
85037878603
-
-
cond-mat/9609273 (unpublished).
-
K. A. Matsuoka, K. K. Likharev, P. Dresselhaus, L. Ji, S. Han, and J. Lukens, cond-mat/9609273 (unpublished).
-
-
-
Matsuoka, K.A.1
Likharev, K.K.2
Dresselhaus, P.3
Ji, L.4
Han, S.5
Lukens, J.6
-
22
-
-
16444362077
-
-
Sangchul Oh, Kyung Wan Park, Mincheol Shin, Seongjae Lee, and El-Hang Lee, Phys. Rev. B 57, 2368 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 2368
-
-
-
23
-
-
85037878260
-
-
Ruby Chen, A. M. Matsuoka, A. N. Korotkov, B. Harris, P. Shevchenko, and K. K. Likharev, MOSES 1.0, Monte-Carlo Single-Electronics Simulator, 1995, available from Ruby Chen, e-mail: rchen@max.physics.sunysb.edu.
-
Ruby Chen, A. M. Matsuoka, A. N. Korotkov, B. Harris, P. Shevchenko, and K. K. Likharev, MOSES 1.0, Monte-Carlo Single-Electronics Simulator, 1995, available from Ruby Chen, e-mail: rchen@max.physics.sunysb.edu.
-
-
-
-
24
-
-
85037881942
-
-
Christoph Wasshuber, SIMON 2.0, Single Electron Device and Circuit Simulator, 1999, http://home1.gte.net/kittypaw/simon.htm.
-
Christoph Wasshuber, SIMON 2.0, Single Electron Device and Circuit Simulator, 1999, http://home1.gte.net/kittypaw/simon.htm.
-
-
-
-
25
-
-
0029849866
-
-
). This reference focuses on the behavior of a single double-dot in the transition from the weak to the strong tunneling regime while in our experiments the interaction of a pair of Coulombically coupled double-dots is studied. The tunneling conductance is low inside the double-dots while between the double-dots there is no tunneling.
-
C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Science 20, 1332 (1996). This reference focuses on the behavior of a single double-dot in the transition from the weak to the strong tunneling regime while in our experiments the interaction of a pair of Coulombically coupled double-dots is studied. The tunneling conductance is low inside the double-dots while between the double-dots there is no tunneling.
-
(1996)
Science
, vol.20
, pp. 1332
-
-
Livermore, C.1
Crouch, C.H.2
Westervelt, R.M.3
Campman, K.L.4
Gossard, A.C.5
-
26
-
-
85037898360
-
-
The experimental setup of Ref. 20 is similar to that of this paper. The major difference is that Ref. 20 examines the system in the Coulomb blockade regime when tunneling is suppressed and the current comes from cotunneling, while the goal of this paper is to investigate the behavior of two capacitively coupled double-dots when the Coulomb blockade is lifted and the current is due to sequential correlated tunneling events.
-
The experimental setup of Ref. 20 is similar to that of this paper. The major difference is that Ref. 20 examines the system in the Coulomb blockade regime when tunneling is suppressed and the current comes from cotunneling, while the goal of this paper is to investigate the behavior of two capacitively coupled double-dots when the Coulomb blockade is lifted and the current is due to sequential correlated tunneling events.
-
-
-
-
27
-
-
0030879276
-
-
A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and G. L. Snider, Science 277, 928 (1997).
-
(1997)
Science
, vol.277
, pp. 928
-
-
Orlov, A.O.1
Amlani, I.2
Bernstein, G.H.3
Lent, C.S.4
Snider, G.L.5
-
28
-
-
0000657626
-
-
A. O. Orlov, I. Amlani, G. Tóth, C. S. Lent, G. H. Bernstein, and G. L. Snider, Appl. Phys. Lett. 73, 2787 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 2787
-
-
Orlov, A.O.1
Amlani, I.2
Tóth, G.3
Lent, C.S.4
Bernstein, G.H.5
Snider, G.L.6
-
30
-
-
85037891247
-
-
One reason for that is the high tunneling resistance. The cotunneling rate is proportional to (Formula presented) while the sequential tunneling rate is proportional to (Formula presented) thus large tunneling resistance helps suppress cotunneling. Another reason is the low source voltage (Formula presented) The cotunneling rate is proportional to the third power of (Formula presented) thus for high enough voltages it could be dominant. Finally, although to get current through the DD, tunneling to higher energy states is necessary, these transitions are never suppressed enough to make cotunneling important (at least in the cases of considerable current flow). Based on cotunneling rate computations (Ref. 3), the error due to neglecting cotunneling turns out to be always less than 5% of the maximum conductance.
-
One reason for that is the high tunneling resistance. The cotunneling rate is proportional to (Formula presented) while the sequential tunneling rate is proportional to (Formula presented) thus large tunneling resistance helps suppress cotunneling. Another reason is the low source voltage (Formula presented) The cotunneling rate is proportional to the third power of (Formula presented) thus for high enough voltages it could be dominant. Finally, although to get current through the DD, tunneling to higher energy states is necessary, these transitions are never suppressed enough to make cotunneling important (at least in the cases of considerable current flow). Based on cotunneling rate computations (Ref. 3), the error due to neglecting cotunneling turns out to be always less than 5% of the maximum conductance.
-
-
-
-
31
-
-
85037897873
-
-
The actual electron temperature of the device is 70 mK. This is due to extra heating of the electron subsystem and is commonly seen in transport experiments. To infer the temperature, we used the method described in Single Electron Tunneling, edited by H. Gilbert and M. H. Devoret (Plenum Press, New York, 1992), Chap. 5, p. 181.
-
The actual electron temperature of the device is 70 mK. This is due to extra heating of the electron subsystem and is commonly seen in transport experiments. To infer the temperature, we used the method described in Single Electron Tunneling, edited by H. Gilbert and M. H. Devoret (Plenum Press, New York, 1992), Chap. 5, p. 181.
-
-
-
-
32
-
-
85037908425
-
-
For a subsequent experimental setup the conductance lowering reached 50%. The computed transition frequency was 200 MHz.
-
For a subsequent experimental setup the conductance lowering reached 50%. The computed transition frequency was 200 MHz.
-
-
-
-
33
-
-
0027266749
-
-
C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, Nanotechnology 4, 49 (1993).
-
(1993)
Nanotechnology
, vol.4
, pp. 49
-
-
Lent, C.S.1
Tougaw, P.D.2
Porod, W.3
Bernstein, G.H.4
-
38
-
-
85037879274
-
-
IEEE Computer Society Press, New York
-
C. S. Lent, P. Tougaw, and W. Porod, PhysComp `94, Proceedings of the Workshop on Physics and Computing (IEEE Computer Society Press, New York, 1994).
-
(1994)
PhysComp `94, Proceedings of the Workshop on Physics and Computing
-
-
Lent, C.S.1
Tougaw, P.2
Porod, W.3
-
39
-
-
0004738849
-
-
G. Tóth, C. S. Lent, P. D. Tougaw, Y. Brazhnik, W. Weng, W. Porod, R. Liu, and Y. Huang, Superlattices Microstruct. 20, 463 (1996).
-
(1996)
Superlattices Microstruct.
, vol.20
, pp. 463
-
-
Tóth, G.1
Lent, C.S.2
Tougaw, P.D.3
Brazhnik, Y.4
Weng, W.5
Porod, W.6
Liu, R.7
Huang, Y.8
|