-
5
-
-
85033836767
-
-
note
-
i can be found in Ref. 7.
-
-
-
-
8
-
-
10044273691
-
-
K. Schick, E. Daub, S. Finkbeiner, and P. Würfel, Appl. Phys. A 54, 109 (1992).
-
(1992)
Appl. Phys. A
, vol.54
, pp. 109
-
-
Schick, K.1
Daub, E.2
Finkbeiner, S.3
Würfel, P.4
-
9
-
-
85033833524
-
-
note
-
This follows from a one-dimensional calculation of the carrier distribution, see for example Ref. 18.
-
-
-
-
10
-
-
0002978895
-
-
Harwood Academic, Montreux
-
S. Finkbeiner, E. Daub, and P. Würfel, in 11th European Photovoltaic Solar Energy Conference (Harwood Academic, Montreux, 1992), pp. 320-322.
-
(1992)
11th European Photovoltaic Solar Energy Conference
, pp. 320-322
-
-
Finkbeiner, S.1
Daub, E.2
Würfel, P.3
-
17
-
-
0004260623
-
-
The University of New South Wales, Kensington
-
M. Green, Solar Cells (The University of New South Wales, Kensington, 1992).
-
(1992)
Solar Cells
-
-
Green, M.1
-
18
-
-
0002978895
-
-
Harwood Academic, Montreux
-
S. Finkbeiner, E. Daub, and P. Würfel, in 11th European Photovoltaic Solar Energy Conference (Harwood Academic, Montreux, 1992), pp. 320-322.
-
(1992)
11th European Photovoltaic Solar Energy Conference
, pp. 320-322
-
-
Finkbeiner, S.1
Daub, E.2
Würfel, P.3
-
19
-
-
0023042990
-
-
D. Guidotti, J. Batchelder, J. V. Vechten, and A. Finkel, Appl. Phys. Lett. 48, 68 (1986).
-
(1986)
Appl. Phys. Lett.
, vol.48
, pp. 68
-
-
Guidotti, D.1
Batchelder, J.2
Vechten, J.V.3
Finkel, A.4
-
20
-
-
2442528465
-
-
D. Guidotti, J. Batchelder, A. Finkel and J. V. Vechten, Phys. Rev. B 38, 1569 (1988).
-
(1988)
Phys. Rev. B
, vol.38
, pp. 1569
-
-
Guidotti, D.1
Batchelder, J.2
Finkel, A.3
Vechten, J.V.4
-
22
-
-
5544241006
-
-
H. S. Stephens, Amsterdam
-
E. Daub, P. Klopp, S. Kugler, and P. Würfel, in 12th European Photovoltaic Solar Energy Conference (H. S. Stephens, Amsterdam, 1994), pp. 1772-1774.
-
(1994)
12th European Photovoltaic Solar Energy Conference
, pp. 1772-1774
-
-
Daub, E.1
Klopp, P.2
Kugler, S.3
Würfel, P.4
-
23
-
-
85033857170
-
-
Ph.D. thesis, University of Karlsruhe, Germany
-
E. Daub, Ph.D. thesis, University of Karlsruhe, Germany, 1995.
-
(1995)
-
-
Daub, E.1
-
37
-
-
85033854176
-
-
note
-
Corkish and Green (Ref. 36) wrongly attribute the temperature dependence of band-band transitions partly to a temperature dependence of the density-of -states effective masses. Especially for the holes, deviations from a simple parabolic band structure lead to an increase of the density-of-state effective mass with increasing temperature, due to the increasing hole population in the split-off band and the anisotropy and nonparabolicity of all three valence bands (Ref. 38). The absorption coefficient, however, is directly determined by the densities of states in the valence and conduction band, which are not expected to change with temperature. The respective correction factors given in Ref. 38 must be eliminated.
-
-
-
|