메뉴 건너뛰기




Volumn 106, Issue 3, 2001, Pages 581-597

Rank-1 phenomena for mapping class groups

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0013164586     PISSN: 00127094     EISSN: None     Source Type: Journal    
DOI: 10.1215/S0012-7094-01-10636-4     Document Type: Article
Times cited : (79)

References (27)
  • 1
    • 85008738588 scopus 로고
    • On the automorphisms of free groups and free nilpotent groups
    • [An]
    • [An] S. Andreadakis, On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239-268.
    • (1965) Proc. London Math. Soc. (3) , vol.15 , pp. 239-268
    • Andreadakis, S.1
  • 2
    • 0009043227 scopus 로고
    • Linear-central filtrations on groups
    • [BL] The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions (Brooklyn, 1992), Amer. Math. Soc., Providence
    • [BL] H. Bass and A. Lubotzky, "Linear-central filtrations on groups" in The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions (Brooklyn, 1992), Contemp. Math. 169, Amer. Math. Soc., Providence, 1994, 45-98.
    • (1994) Contemp. Math. , vol.169 , pp. 45-98
    • Bass, H.1    Lubotzky, A.2
  • 3
    • 0003316111 scopus 로고
    • Braids, Links, and Mapping Class Groups
    • [Bi] Princeton Univ. Press, Princeton
    • [Bi] J. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, Princeton, 1974.
    • (1974) Ann. of Math. Stud. , vol.82
    • Birman, J.1
  • 4
    • 21344463814 scopus 로고    scopus 로고
    • A group-theoretic criterion for property $\fA$
    • [CV]
    • [CV] M. Culler and K. Vogtmann, A group-theoretic criterion for property $\fA$, Proc. Amer. Math. Soc. 124 (1996), 677-683.
    • (1996) Proc. Amer. Math. Soc. , vol.124 , pp. 677-683
    • Culler, M.1    Vogtmann, K.2
  • 6
    • 33751133375 scopus 로고
    • Travaux de Thurston sur les surfaces (Orsay, 1978)
    • [FLP] A. Fathi, F. Laudenbach, and V. Poenaru, eds., Soc. Math. France, Montrouge
    • [FLP] A. Fathi, F. Laudenbach, and V. Poenaru, eds., Travaux de Thurston sur les surfaces (Orsay, 1978), Astérisque 66-67, Soc. Math. France, Montrouge, 1979.
    • (1979) Astérisque , vol.66-67
  • 7
    • 0001543830 scopus 로고
    • The automorphism group of a free group is not linear
    • [FP]
    • [FP] E. Formanek and C. Procesi, The automorphism group of a free group is not linear, J. Algebra 149 (1992), 494-499.
    • (1992) J. Algebra , vol.149 , pp. 494-499
    • Formanek, E.1    Procesi, C.2
  • 8
    • 0000203865 scopus 로고
    • Rational subgroups of biautomatic groups
    • [GS]
    • [GS] S. M. Gersten and H. B. Short, Rational subgroups of biautomatic groups, Ann. of Math. (2) 134 (1991), 125-158.
    • (1991) Ann. of Math. (2) , vol.134 , pp. 125-158
    • Gersten, S.M.1    Short, H.B.2
  • 9
    • 0031492106 scopus 로고    scopus 로고
    • Infinitesimal presentations of the Torelli groups
    • [Hai]
    • [Hai] R. Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), 597-651.
    • (1997) J. Amer. Math. Soc. , vol.10 , pp. 597-651
    • Hain, R.1
  • 10
    • 34250146518 scopus 로고
    • The second homology group of the mapping class group of an orientable surface
    • [Ha]
    • [Ha] J. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), 221-239.
    • (1983) Invent. Math. , vol.72 , pp. 221-239
    • Harer, J.1
  • 11
    • 1542640314 scopus 로고
    • Subgroups of Teichm\" uller Modular Groups
    • [Iv1] Amer. Math. Soc., Providence
    • [Iv1] N. Ivanov, Subgroups of Teichm\" uller Modular Groups, Transl. Math. Monogr. 115, Amer. Math. Soc., Providence, 1992.
    • (1992) Transl. Math. Monogr. , vol.115
    • Ivanov, N.1
  • 13
    • 85008992156 scopus 로고    scopus 로고
    • [Iv3], preprint
    • [Iv3] _, Mapping class groups, preprint, 1999, http://www.math.msu.edu/~ivanov.
    • (1999) Mapping Class Groups
  • 14
    • 0000266452 scopus 로고
    • The structure of the Torelli group, I: A finite set of generators for $mathcal I$
    • [J]
    • [J] D. Johnson, The structure of the Torelli group, I: A finite set of generators for $mathcal I$, Ann. of Math. (2) 118 (1983), 423-442.
    • (1983) Ann. of Math. (2) , vol.118 , pp. 423-442
    • Johnson, D.1
  • 15
    • 0008872759 scopus 로고
    • A group-theoretic characterization of linear groups
    • [Lui]
    • [Lui] A. Lubotzky, A group-theoretic characterization of linear groups, J. Algebra 113 (1988), 207-214.
    • (1988) J. Algebra , vol.113 , pp. 207-214
    • Lubotzky, A.1
  • 16
    • 0000762915 scopus 로고
    • Subgroup growth and congruence subgroups
    • [Lu2] _
    • [Lu2] _, Subgroup growth and congruence subgroups, Invent. Math. 119 (1995), 267-295.
    • (1995) Invent. Math. , vol.119 , pp. 267-295
  • 17
    • 0001393102 scopus 로고
    • Cyclic subgroups of exponential growth and metrics on discrete groups
    • [LMR1]
    • [LMR1] A. Lubotzky, S. Mozes, and M. S. Raghunathan, Cyclic subgroups of exponential growth and metrics on discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 735-740.
    • (1993) C. R. Acad. Sci. Paris Sér. I Math. , vol.317 , pp. 735-740
    • Lubotzky, A.1    Mozes, S.2    Raghunathan, M.S.3
  • 18
    • 85009004677 scopus 로고    scopus 로고
    • The word and Riemannian metrics on lattices of semisimple groups
    • [LMR2], to appear in
    • [LMR2] _, The word and Riemannian metrics on lattices of semisimple groups, to appear in Inst. Hautes Études Sci. Publ. Math.
    • Inst. Hautes Études Sci. Publ. Math.
  • 19
    • 33645952349 scopus 로고
    • A foliation of Teichmüller space by twist invariant disks
    • [MM]
    • [MM] A. Marden and H. A. Masur, A foliation of Teichmüller space by twist invariant disks, Math. Scand. 36 (1975), 211-228.;
    • (1975) Math. Scand. , vol.36 , pp. 211-228
    • Marden, A.1    Masur, H.A.2
  • 20
    • 33751126576 scopus 로고
    • Addendum
    • Addendum, Math. Scand. 39 (1976), 232-238.
    • (1976) Math. Scand. , vol.39 , pp. 232-238
  • 21
    • 38249008848 scopus 로고
    • The Torelli groups for genus $2$ and $3$ surfaces
    • [Me]
    • [Me] G. Mess, The Torelli groups for genus $2$ and $3$ surfaces, Topology 31 (1992), 775-790.
    • (1992) Topology , vol.31 , pp. 775-790
    • Mess, G.1
  • 22
    • 0001430356 scopus 로고
    • Mapping class groups are automatic
    • [Mo]
    • [Mo] L. Mosher, Mapping class groups are automatic, Ann. of Math. (2) 142 (1995), 303-384.
    • (1995) Ann. of Math. (2) , vol.142 , pp. 303-384
    • Mosher, L.1
  • 23
    • 0000776459 scopus 로고
    • Abstract properties of $S$-arithmetic groups and the congruence problem
    • [PR]
    • [PR] V. Platonov and A. Rapinchuk, Abstract properties of $S$-arithmetic groups and the congruence problem (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 483-508.
    • (1992) Izv. Ross. Akad. Nauk Ser. Mat. , vol.56 , pp. 483-508
    • Platonov, V.1    Rapinchuk, A.2
  • 24
    • 84966228810 scopus 로고
    • Two theorems on the mapping class group of a surface
    • [Po]
    • [Po] J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), 347-350.
    • (1978) Proc. Amer. Math. Soc. , vol.68 , pp. 347-350
    • Powell, J.1
  • 25
    • 0040479238 scopus 로고
    • Zur Theorie der vertauschbaren Matrizen
    • [Se]
    • [Se] I. Schur, Zur Theorie der vertauschbaren Matrizen, J. Reine Angew. Math. 130 (1905), 66-76.
    • (1905) J. Reine Angew. Math. , vol.130 , pp. 66-76
    • Schur, I.1
  • 26
    • 0003348065 scopus 로고
    • Linear Algebraic Groups
    • [Sp] Birkhäuser, Boston
    • [Sp] T. A. Springer, Linear Algebraic Groups, Progr. Math. 9, Birkhäuser, Boston, 1981.
    • (1981) Progr. Math. , vol.9
    • Springer, T.A.1
  • 27
    • 21744461823 scopus 로고    scopus 로고
    • Bounded generation does not imply finite presentation
    • [Su]
    • [Su] B. Sury, Bounded generation does not imply finite presentation, Comm. Algebra 25 (1997), 1673-1683.
    • (1997) Comm. Algebra , vol.25 , pp. 1673-1683
    • Sury, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.