-
1
-
-
0000734143
-
Krylov sequences of maximal length and convergence of GMRES
-
M. Arioli, V. Pták, and Z. Strakoš, Krylov sequences of maximal length and convergence of GMRES, BIT, 38 (1998), pp. 636-643.
-
(1998)
BIT
, vol.38
, pp. 636-643
-
-
Arioli, M.1
Pták, V.2
Strakoš, Z.3
-
2
-
-
0002864202
-
A theoretical comparison of the Arnoldi and GMRES algorithms
-
P. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 58-78.
-
(1991)
SIAM J. Sci. Stat. Comput.
, vol.12
, pp. 58-78
-
-
Brown, P.1
-
4
-
-
0000385440
-
GMRES and the minimal polynomial
-
S. Campbell, I. Ipsen, C. Kelley, and C. Meyer, GMRES and the minimal polynomial BIT, 36 (1996), pp. 664-675.
-
(1996)
BIT
, vol.36
, pp. 664-675
-
-
Campbell, S.1
Ipsen, I.2
Kelley, C.3
Meyer, C.4
-
5
-
-
0031259082
-
A note on the convergence behaviour of GMRES
-
Z. Cao, A note on the convergence behaviour of GMRES, Appl. Numer. Math., 25 (1997), pp. 13-20.
-
(1997)
Appl. Numer. Math.
, vol.25
, pp. 13-20
-
-
Cao, Z.1
-
6
-
-
84940536130
-
Perturbation theory for the solution of systems of linear equations
-
Department of Computer Science, Yale University, New Haven, CT
-
S. Chandrasekaran and I. Ipsen, Perturbation theory for the solution of systems of linear equations, Research Report 866, Department of Computer Science, Yale University, New Haven, CT, 1991.
-
(1991)
Research Report 866
-
-
Chandrasekaran, S.1
Ipsen, I.2
-
7
-
-
0344413267
-
On the sensitivity of solution components in linear systems of equations
-
S. Chandrasekaran and I. Ipsen, On the sensitivity of solution components in linear systems of equations, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 93-112.
-
(1995)
SIAM J. Matrix Anal. Appl.
, vol.16
, pp. 93-112
-
-
Chandrasekaran, S.1
Ipsen, I.2
-
8
-
-
0032163793
-
From potential theory to matrix iterations in six steps
-
T. Driscoll, K. Toh, and L. Trefethen, From potential theory to matrix iterations in six steps, SIAM Rev., 40 (1998), pp. 547-578.
-
(1998)
SIAM Rev.
, vol.40
, pp. 547-578
-
-
Driscoll, T.1
Toh, K.2
Trefethen, L.3
-
9
-
-
0030507854
-
Minimal residual method stronger than polynomial preconditioning
-
V. Faber, W. Joubert, E. Knill, and T. Manteuffel, Minimal residual method stronger than polynomial preconditioning, SIAM J. Matrix Anal. Appl, 17 (1996), pp. 707-729.
-
(1996)
SIAM J. Matrix Anal. Appl
, vol.17
, pp. 707-729
-
-
Faber, V.1
Joubert, W.2
Knill, E.3
Manteuffel, T.4
-
10
-
-
0004236492
-
-
The Johns Hopkins University Press, Baltimore, MD
-
G. Golub and C. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
-
(1996)
Matrix Computations, 3rd Ed.
-
-
Golub, G.1
Van Loan, C.2
-
11
-
-
0004780988
-
A singular value inequality for block matrices
-
W. Govaerts and J. Pryce, A singular value inequality for block matrices, Linear Algebra Appl., 125 (1989), pp. 141-148.
-
(1989)
Linear Algebra Appl.
, vol.125
, pp. 141-148
-
-
Govaerts, W.1
Pryce, J.2
-
12
-
-
0001355114
-
Comparison of splittings used with the conjugate gradient algorithm
-
A. Greenbaum, Comparison of splittings used with the conjugate gradient algorithm, Numer. Math., 33 (1979), pp. 181-194.
-
(1979)
Numer. Math.
, vol.33
, pp. 181-194
-
-
Greenbaum, A.1
-
14
-
-
0001645763
-
Max-min propres of matrix factor norms
-
A. Greenbaum and L. Gurvits, Max-min propres of matrix factor norms, SIAM J. Sci. Comput., 15 (1994), pp. 348-358.
-
(1994)
SIAM J. Sci. Comput.
, vol.15
, pp. 348-358
-
-
Greenbaum, A.1
Gurvits, L.2
-
15
-
-
0041049302
-
Any nonincreasing convergence curve is possible for GMRES
-
A. Greenbaum V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465-469.
-
(1996)
SIAM J. Matrix Anal. Appl.
, vol.17
, pp. 465-469
-
-
Greenbaum, A.1
Pták, V.2
Strakoš, Z.3
-
16
-
-
0000580113
-
GMRES/CR and Arnoldi/Lanczos as matrix approximation problems
-
A. Greenbaum and L. Trefethen, GMRES/CR and Arnoldi/Lanczos as matrix approximation problems, SIAM J. Sci. Comput., 15 (1994), pp. 359-368.
-
(1994)
SIAM J. Sci. Comput.
, vol.15
, pp. 359-368
-
-
Greenbaum, A.1
Trefethen, L.2
-
17
-
-
0003216822
-
Efficient algorithms for computing a strong rank-revealing QR factorization
-
M. Gu and S. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848-69.
-
(1996)
SIAM J. Sci. Comput.
, vol.17
, pp. 848-869
-
-
Gu, M.1
Eisenstat, S.2
-
18
-
-
0001973107
-
Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices
-
P. Henrici, Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices, Numer. Math., 4 (1962), pp. 24-40.
-
(1962)
Numer. Math.
, vol.4
, pp. 24-40
-
-
Henrici, P.1
-
20
-
-
0013004199
-
Error analysis of Krylov methods in a nutshell
-
M. Hochbruck and C. Lubich, Error analysis of Krylov methods in a nutshell, SIAM J Sci. Comput., 19 (1998), pp. 695-701.
-
(1998)
SIAM J Sci. Comput.
, vol.19
, pp. 695-701
-
-
Hochbruck, M.1
Lubich, C.2
-
21
-
-
0013169674
-
A different approach to bounding the minimal residual norm in Krylov methods
-
Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University
-
I. Ipsen, A different approach to bounding the minimal residual norm in Krylov methods, Tech. Rep. CRSC-TR98-19, Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University, 1998. http-//www4.ncsu.edu/∼ipsen/linsys.html.
-
(1998)
Tech. Rep. CRSC-TR98-19
-
-
Ipsen, I.1
-
22
-
-
0032280255
-
The idea behind Krylov methods
-
I. Ipsen and C. Meyer, The idea behind Krylov methods, Amer. Math. Monthly, 105 (1998), pp. 889-899.
-
(1998)
Amer. Math. Monthly
, vol.105
, pp. 889-899
-
-
Ipsen, I.1
Meyer, C.2
-
23
-
-
0007434714
-
A note on the superlinear convergence of GMRES
-
I. Moret, A note on the superlinear convergence of GMRES, SIAM J. Numer. Anal., 34 (1997), pp. 513-516.
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 513-516
-
-
Moret, I.1
-
24
-
-
0001517599
-
How fast are nonsymmetric matrix iterations?
-
N. Nachtigal, S. Reddy, and L. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778-795.
-
(1992)
SIAM J. Matrix Anal. Appl.
, vol.13
, pp. 778-795
-
-
Nachtigal, N.1
Reddy, S.2
Trefethen, L.3
-
25
-
-
0001517601
-
A hybrid GMRES algorithm for nonsymmetric linear systems
-
N. Nachtigal, L. Reichel, and L. Trefethen, A hybrid GMRES algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 796-825.
-
(1992)
SIAM J. Matrix Anal. Appl.
, vol.13
, pp. 796-825
-
-
Nachtigal, N.1
Reichel, L.2
Trefethen, L.3
-
26
-
-
84985350406
-
Approximate solutions and eigenvalue bounds from Krylov subspaces
-
C. Paige, B. Parlett, and H. Van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra, 2 (1995), pp. 115-133.
-
(1995)
Numer. Linear Algebra
, vol.2
, pp. 115-133
-
-
Paige, C.1
Parlett, B.2
Van Der Vorst, H.3
-
27
-
-
0016555955
-
Solution of sparse indefinite systems of linear equations
-
C. Paige and M. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617-629.
-
(1975)
SIAM J. Numer. Anal.
, vol.12
, pp. 617-629
-
-
Paige, C.1
Saunders, M.2
-
28
-
-
0000048673
-
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
-
Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Sci. Stat. Comput., 7 (1986), pp. 856-869.
-
(1986)
SIAM Sci. Stat. Comput.
, vol.7
, pp. 856-869
-
-
Saad, Y.1
Schultz, M.2
-
29
-
-
84972517124
-
Collinearity and least squares regression
-
G. Stewart, Collinearity and least squares regression, Statist. Sci., 2 (1987), pp. 68-100.
-
(1987)
Statist. Sci.
, vol.2
, pp. 68-100
-
-
Stewart, G.1
-
30
-
-
0031539676
-
GMRES vs. ideal GMRES
-
K. Toh, GMRES vs. ideal GMRES, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 30-36.
-
(1997)
SIAM J. Matrix Anal. Appl.
, vol.18
, pp. 30-36
-
-
Toh, K.1
-
31
-
-
0027701865
-
The superlinear convergence behaviour of GMRES
-
H. Van der Vorst and C. Vuik, The superlinear convergence behaviour of GMRES, J. Comput. Appl. Math., 48 (1993), pp. 327-341.
-
(1993)
J. Comput. Appl. Math.
, vol.48
, pp. 327-341
-
-
Van Der Vorst, H.1
Vuik, C.2
|