메뉴 건너뛰기




Volumn 46, Issue 2, 2002, Pages 353-403

Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains

Author keywords

Boundary value problems; Elliptic PDE's; Lipschitz domains; Nonlinear equations

Indexed keywords


EID: 0012948440     PISSN: 02141493     EISSN: None     Source Type: Journal    
DOI: 10.5565/PUBLMAT_46202_03     Document Type: Article
Times cited : (22)

References (39)
  • 2
    • 0004008967 scopus 로고
    • Pure and Applied Mathematics, Academic Press, Inc., Boston, MA
    • C. BENNETT AND R. SHARPLEY, "Interpolation of operators", Pure and Applied Mathematics 129, Academic Press, Inc., Boston, MA, 1988.
    • (1988) Interpolation of Operators , vol.129
    • Bennett, C.1    Sharpley, R.2
  • 3
    • 0004234640 scopus 로고
    • Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin-New York
    • J. BERGH AND J. LÖFSTRÖM, "Interpolation spaces. An introduction", Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, Berlin-New York, 1976.
    • (1976) Interpolation Spaces. An Introduction , vol.223
    • Bergh, J.1    Löfström, J.2
  • 4
    • 84881031051 scopus 로고
    • American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI
    • L. A. CAFFARELLI AND X. CABRÉ, "Fully nonlinear elliptic equations", American Mathematical Society Colloquium Publications 43, American Mathematical Society, Providence, RI, 1995.
    • (1995) Fully Nonlinear Elliptic Equations , vol.43
    • Caffarelli, L.A.1    Cabré, X.2
  • 5
    • 0039523791 scopus 로고    scopus 로고
    • On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions
    • Z.-Q. CHEN, R. J. WILLIAMS AND Z. ZHAO, On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions, Math. Ann. 315(4) (1999), 735-769.
    • (1999) Math. Ann. , vol.315 , Issue.4 , pp. 735-769
    • Chen, Z.-Q.1    Williams, R.J.2    Zhao, Z.3
  • 6
    • 0000225785 scopus 로고
    • p for Laplace's equation in Lipschitz domains
    • p for Laplace's equation in Lipschitz domains, Ann. of Math. (2) 125(3) (1987), 437-465.
    • (1987) Ann. of Math. (2) , vol.125 , Issue.3 , pp. 437-465
    • Dahlberg, B.E.1    Kenig, C.E.2
  • 7
    • 2442531291 scopus 로고    scopus 로고
    • Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds
    • to appear
    • M. DINDOŠ, Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds, Comm. Partial Differential Equations (to appear).
    • Comm. Partial Differential Equations
    • Dindoš, M.1
  • 9
    • 0000474697 scopus 로고    scopus 로고
    • Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains
    • E. FABES, O. MENDEZ AND M. MITREA, Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal. 159(2) (1998), 323-368.
    • (1998) J. Funct. Anal. , vol.159 , Issue.2 , pp. 323-368
    • Fabes, E.1    Mendez, O.2    Mitrea, M.3
  • 11
    • 0003399996 scopus 로고
    • Studies in Applied Mechanics, Elsevier Scientific Publishing Co., Amsterdam-New York
    • S. FUČÍK AND A. KUFNER, "Nonlinear differential equations", Studies in Applied Mechanics 2, Elsevier Scientific Publishing Co., Amsterdam-New York, 1980.
    • (1980) Nonlinear Differential Equations , vol.2
    • Fučík, S.1    Kufner, A.2
  • 14
    • 2442443602 scopus 로고    scopus 로고
    • Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York
    • E. HEBEY, "Nonlinear analysis on manifolds: Sobolev spaces and inequalities", Courant Lecture Notes in Mathematics 5, New York University, Courant Institute of Mathematical Sciences, New York, 1999.
    • (1999) Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities , vol.5
    • Hebey, E.1
  • 15
    • 0001311566 scopus 로고
    • Global uniqueness for a two-dimensional semilinear elliptic inverse problem
    • V. ISAKOV AND A. I. NACHMAN, Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347(9) (1995), 3375-3390.
    • (1995) Trans. Amer. Math. Soc. , vol.347 , Issue.9 , pp. 3375-3390
    • Isakov, V.1    Nachman, A.I.2
  • 16
    • 0000271720 scopus 로고
    • The inhomogeneous Dirichlet problem in Lipschitz domains
    • D. JERISON AND C. E. KENIG, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130(1) (1995), 161-219.
    • (1995) J. Funct. Anal. , vol.130 , Issue.1 , pp. 161-219
    • Jerison, D.1    Kenig, C.E.2
  • 17
    • 0001226256 scopus 로고
    • Unique continuation and absence of positive eigenvalues for Schrödinger operators
    • D. JERISON AND C. E. KENIG, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121(3) (1985), 463-494.
    • (1985) Ann. of Math. (2) , vol.121 , Issue.3 , pp. 463-494
    • Jerison, D.1    Kenig, C.E.2
  • 18
    • 0012949106 scopus 로고    scopus 로고
    • Solvability of Dirichlet problems for semilinear elliptic equations on certain domains
    • Z. JIN, Solvability of Dirichlet problems for semilinear elliptic equations on certain domains, Pacific J. Math. 176(1) (1996), 117-128.
    • (1996) Pacific J. Math. , vol.176 , Issue.1 , pp. 117-128
    • Jin, Z.1
  • 19
    • 84980082306 scopus 로고
    • On functions of bounded mean oscillation
    • F. JOHN AND L. NIRENBERG, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
    • (1961) Comm. Pure Appl. Math. , vol.14 , pp. 415-426
    • John, F.1    Nirenberg, L.2
  • 24
    • 0039303351 scopus 로고    scopus 로고
    • Complex powers of the Neumann Laplacian in Lipschitz domains
    • O. MENDEZ AND M. MITREA, Complex powers of the Neumann Laplacian in Lipschitz domains, Math. Nachr. 223 (2001), 77-88.
    • (2001) Math. Nachr. , vol.223 , pp. 77-88
    • Mendez, O.1    Mitrea, M.2
  • 25
    • 0036002994 scopus 로고    scopus 로고
    • Layer potentials and Hodge decompositions in two dimensional Lipschitz domains
    • D. MITREA, Layer potentials and Hodge decompositions in two dimensional Lipschitz domains, Math. Ann. 322(1) (2002), 75-101.
    • (2002) Math. Ann. , vol.322 , Issue.1 , pp. 75-101
    • Mitrea, D.1
  • 26
    • 0013332714 scopus 로고    scopus 로고
    • General second order, strongly elliptic systems in low dimensional nonsmooth manifolds
    • (Fayetteville, AR), Contemp. Math., Amer. Math. Soc., Providence, RI
    • D. MITREA AND M. MITREA, General second order, strongly elliptic systems in low dimensional nonsmooth manifolds, in: "Harmonic analysis and boundary value problems" (Fayetteville, AR, 2000), Contemp. Math. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 61-86.
    • (2000) Harmonic Analysis and Boundary Value Problems , vol.277 , pp. 61-86
    • Mitrea, D.1    Mitrea, M.2
  • 27
    • 0035285749 scopus 로고    scopus 로고
    • Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds
    • 120 pp
    • D. MITREA, M. MITREA AND M. TAYLOR, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, Mem. Amer. Math. Soc. 150(713) (2001), 120 pp.
    • (2001) Mem. Amer. Math. Soc. , vol.150 , Issue.713
    • Mitrea, D.1    Mitrea, M.2    Taylor, M.3
  • 28
    • 0033586511 scopus 로고    scopus 로고
    • Boundary layer methods for Lipschitz domains in Riemannian manifolds
    • M. MITREA AND M. TAYLOR, Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal. 163(2) (1999), 181-251.
    • (1999) J. Funct. Anal. , vol.163 , Issue.2 , pp. 181-251
    • Mitrea, M.1    Taylor, M.2
  • 29
    • 85121159562 scopus 로고    scopus 로고
    • P Hardy, and Hölder space results
    • P Hardy, and Hölder space results, Comm. Anal. Geom. 9(2) (2001), 369-421.
    • (2001) Comm. Anal. Geom. , vol.9 , Issue.2 , pp. 369-421
    • Mitrea, M.1    Taylor, M.2
  • 30
    • 0001929311 scopus 로고    scopus 로고
    • Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem
    • M. MITREA AND M. TAYLOR, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem, J. Funct. Anal. 176(1) (2000), 1-79.
    • (2000) J. Funct. Anal. , vol.176 , Issue.1 , pp. 1-79
    • Mitrea, M.1    Taylor, M.2
  • 31
    • 0034358481 scopus 로고    scopus 로고
    • Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors
    • M. MITREA AND M. TAYLOR, Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors, Comm. Partial Differential Equations 25(7-8) (2000), 1487-1536.
    • (2000) Comm. Partial Differential Equations , vol.25 , Issue.7-8 , pp. 1487-1536
    • Mitrea, M.1    Taylor, M.2
  • 35
    • 0001030020 scopus 로고
    • A note on Trudinger's extension of Sobolev's inequalities
    • R. S. STRICHARTZ, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1971/72), 841-842.
    • (1971) Indiana Univ. Math. J. , vol.21 , pp. 841-842
    • Strichartz, R.S.1
  • 37
    • 2442613466 scopus 로고
    • Monographs in Mathematics, Birkhäuser Verlag, Basel
    • H. TRIEBEL, "Theory of function spaces", Monographs in Mathematics 78, Birkhäuser Verlag, Basel, 1983.
    • (1983) Theory of Function Spaces , vol.78
    • Triebel, H.1
  • 38
    • 84985309741 scopus 로고
    • ρ and by holomorphic Φ(u) in function spaces of Besov-Hardy-Sobolev type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u)
    • ρ and by holomorphic Φ(u) in function spaces of Besov-Hardy-Sobolev type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u), Math. Nachr. 117 (1984), 193-213.
    • (1984) Math. Nachr. , vol.117 , pp. 193-213
    • Triebel, H.1
  • 39
    • 48549113823 scopus 로고
    • Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains
    • G. VERCHOTA, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59(3) (1984), 572-611.
    • (1984) J. Funct. Anal. , vol.59 , Issue.3 , pp. 572-611
    • Verchota, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.