-
2
-
-
0004008967
-
-
Pure and Applied Mathematics, Academic Press, Inc., Boston, MA
-
C. BENNETT AND R. SHARPLEY, "Interpolation of operators", Pure and Applied Mathematics 129, Academic Press, Inc., Boston, MA, 1988.
-
(1988)
Interpolation of Operators
, vol.129
-
-
Bennett, C.1
Sharpley, R.2
-
3
-
-
0004234640
-
-
Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin-New York
-
J. BERGH AND J. LÖFSTRÖM, "Interpolation spaces. An introduction", Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, Berlin-New York, 1976.
-
(1976)
Interpolation Spaces. An Introduction
, vol.223
-
-
Bergh, J.1
Löfström, J.2
-
4
-
-
84881031051
-
-
American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI
-
L. A. CAFFARELLI AND X. CABRÉ, "Fully nonlinear elliptic equations", American Mathematical Society Colloquium Publications 43, American Mathematical Society, Providence, RI, 1995.
-
(1995)
Fully Nonlinear Elliptic Equations
, vol.43
-
-
Caffarelli, L.A.1
Cabré, X.2
-
5
-
-
0039523791
-
On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions
-
Z.-Q. CHEN, R. J. WILLIAMS AND Z. ZHAO, On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions, Math. Ann. 315(4) (1999), 735-769.
-
(1999)
Math. Ann.
, vol.315
, Issue.4
, pp. 735-769
-
-
Chen, Z.-Q.1
Williams, R.J.2
Zhao, Z.3
-
6
-
-
0000225785
-
p for Laplace's equation in Lipschitz domains
-
p for Laplace's equation in Lipschitz domains, Ann. of Math. (2) 125(3) (1987), 437-465.
-
(1987)
Ann. of Math. (2)
, vol.125
, Issue.3
, pp. 437-465
-
-
Dahlberg, B.E.1
Kenig, C.E.2
-
7
-
-
2442531291
-
Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds
-
to appear
-
M. DINDOŠ, Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds, Comm. Partial Differential Equations (to appear).
-
Comm. Partial Differential Equations
-
-
Dindoš, M.1
-
9
-
-
0000474697
-
Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains
-
E. FABES, O. MENDEZ AND M. MITREA, Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal. 159(2) (1998), 323-368.
-
(1998)
J. Funct. Anal.
, vol.159
, Issue.2
, pp. 323-368
-
-
Fabes, E.1
Mendez, O.2
Mitrea, M.3
-
10
-
-
0003423703
-
-
Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht-Boston, Mass.
-
S. FUČÍK, "Solvability of nonlinear equations and boundary value problems", Mathematics and its Applications 4, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1980.
-
(1980)
Solvability of Nonlinear Equations and Boundary Value Problems
, vol.4
-
-
Fučík, S.1
-
11
-
-
0003399996
-
-
Studies in Applied Mechanics, Elsevier Scientific Publishing Co., Amsterdam-New York
-
S. FUČÍK AND A. KUFNER, "Nonlinear differential equations", Studies in Applied Mechanics 2, Elsevier Scientific Publishing Co., Amsterdam-New York, 1980.
-
(1980)
Nonlinear Differential Equations
, vol.2
-
-
Fučík, S.1
Kufner, A.2
-
13
-
-
0003549965
-
-
Reprint of the edition, Classics in Mathematics, Springer-Verlag, Berlin
-
D. GILBARG AND N. S. TRUDINGER, "Elliptic partial differential equations of second order", Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
-
(1998)
Elliptic Partial Differential Equations of Second Order
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
14
-
-
2442443602
-
-
Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York
-
E. HEBEY, "Nonlinear analysis on manifolds: Sobolev spaces and inequalities", Courant Lecture Notes in Mathematics 5, New York University, Courant Institute of Mathematical Sciences, New York, 1999.
-
(1999)
Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities
, vol.5
-
-
Hebey, E.1
-
15
-
-
0001311566
-
Global uniqueness for a two-dimensional semilinear elliptic inverse problem
-
V. ISAKOV AND A. I. NACHMAN, Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347(9) (1995), 3375-3390.
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, Issue.9
, pp. 3375-3390
-
-
Isakov, V.1
Nachman, A.I.2
-
16
-
-
0000271720
-
The inhomogeneous Dirichlet problem in Lipschitz domains
-
D. JERISON AND C. E. KENIG, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130(1) (1995), 161-219.
-
(1995)
J. Funct. Anal.
, vol.130
, Issue.1
, pp. 161-219
-
-
Jerison, D.1
Kenig, C.E.2
-
17
-
-
0001226256
-
Unique continuation and absence of positive eigenvalues for Schrödinger operators
-
D. JERISON AND C. E. KENIG, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121(3) (1985), 463-494.
-
(1985)
Ann. of Math. (2)
, vol.121
, Issue.3
, pp. 463-494
-
-
Jerison, D.1
Kenig, C.E.2
-
18
-
-
0012949106
-
Solvability of Dirichlet problems for semilinear elliptic equations on certain domains
-
Z. JIN, Solvability of Dirichlet problems for semilinear elliptic equations on certain domains, Pacific J. Math. 176(1) (1996), 117-128.
-
(1996)
Pacific J. Math.
, vol.176
, Issue.1
, pp. 117-128
-
-
Jin, Z.1
-
19
-
-
84980082306
-
On functions of bounded mean oscillation
-
F. JOHN AND L. NIRENBERG, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
-
(1961)
Comm. Pure Appl. Math.
, vol.14
, pp. 415-426
-
-
John, F.1
Nirenberg, L.2
-
21
-
-
2442474757
-
-
CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI
-
C. E. KENIG, "Harmonic analysis techniques for second order elliptic boundary value problems", CBMS Regional Conference Series in Mathematics 83, American Mathematical Society, Providence, RI, 1994.
-
(1994)
Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems
, vol.83
-
-
Kenig, C.E.1
-
24
-
-
0039303351
-
Complex powers of the Neumann Laplacian in Lipschitz domains
-
O. MENDEZ AND M. MITREA, Complex powers of the Neumann Laplacian in Lipschitz domains, Math. Nachr. 223 (2001), 77-88.
-
(2001)
Math. Nachr.
, vol.223
, pp. 77-88
-
-
Mendez, O.1
Mitrea, M.2
-
25
-
-
0036002994
-
Layer potentials and Hodge decompositions in two dimensional Lipschitz domains
-
D. MITREA, Layer potentials and Hodge decompositions in two dimensional Lipschitz domains, Math. Ann. 322(1) (2002), 75-101.
-
(2002)
Math. Ann.
, vol.322
, Issue.1
, pp. 75-101
-
-
Mitrea, D.1
-
26
-
-
0013332714
-
General second order, strongly elliptic systems in low dimensional nonsmooth manifolds
-
(Fayetteville, AR), Contemp. Math., Amer. Math. Soc., Providence, RI
-
D. MITREA AND M. MITREA, General second order, strongly elliptic systems in low dimensional nonsmooth manifolds, in: "Harmonic analysis and boundary value problems" (Fayetteville, AR, 2000), Contemp. Math. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 61-86.
-
(2000)
Harmonic Analysis and Boundary Value Problems
, vol.277
, pp. 61-86
-
-
Mitrea, D.1
Mitrea, M.2
-
27
-
-
0035285749
-
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds
-
120 pp
-
D. MITREA, M. MITREA AND M. TAYLOR, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, Mem. Amer. Math. Soc. 150(713) (2001), 120 pp.
-
(2001)
Mem. Amer. Math. Soc.
, vol.150
, Issue.713
-
-
Mitrea, D.1
Mitrea, M.2
Taylor, M.3
-
28
-
-
0033586511
-
Boundary layer methods for Lipschitz domains in Riemannian manifolds
-
M. MITREA AND M. TAYLOR, Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal. 163(2) (1999), 181-251.
-
(1999)
J. Funct. Anal.
, vol.163
, Issue.2
, pp. 181-251
-
-
Mitrea, M.1
Taylor, M.2
-
29
-
-
85121159562
-
P Hardy, and Hölder space results
-
P Hardy, and Hölder space results, Comm. Anal. Geom. 9(2) (2001), 369-421.
-
(2001)
Comm. Anal. Geom.
, vol.9
, Issue.2
, pp. 369-421
-
-
Mitrea, M.1
Taylor, M.2
-
30
-
-
0001929311
-
Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem
-
M. MITREA AND M. TAYLOR, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem, J. Funct. Anal. 176(1) (2000), 1-79.
-
(2000)
J. Funct. Anal.
, vol.176
, Issue.1
, pp. 1-79
-
-
Mitrea, M.1
Taylor, M.2
-
31
-
-
0034358481
-
Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors
-
M. MITREA AND M. TAYLOR, Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors, Comm. Partial Differential Equations 25(7-8) (2000), 1487-1536.
-
(2000)
Comm. Partial Differential Equations
, vol.25
, Issue.7-8
, pp. 1487-1536
-
-
Mitrea, M.1
Taylor, M.2
-
32
-
-
0003419898
-
-
de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin
-
T. RUNST AND W. SICKEL, "Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations", de Gruyter Series in Nonlinear Analysis and Applications 3, Walter de Gruyter & Co., Berlin, 1996.
-
(1996)
Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations
, vol.3
-
-
Runst, T.1
Sickel, W.2
-
34
-
-
0003799686
-
-
Princeton Mathematical Series, Princeton University Press, Princeton, N.J.
-
E. M. STEIN, "Singular integrals and differentiability properties of functions", Princeton Mathematical Series 30, Princeton University Press, Princeton, N.J., 1970.
-
(1970)
Singular Integrals and Differentiability Properties of Functions
, vol.30
-
-
Stein, E.M.1
-
35
-
-
0001030020
-
A note on Trudinger's extension of Sobolev's inequalities
-
R. S. STRICHARTZ, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1971/72), 841-842.
-
(1971)
Indiana Univ. Math. J.
, vol.21
, pp. 841-842
-
-
Strichartz, R.S.1
-
37
-
-
2442613466
-
-
Monographs in Mathematics, Birkhäuser Verlag, Basel
-
H. TRIEBEL, "Theory of function spaces", Monographs in Mathematics 78, Birkhäuser Verlag, Basel, 1983.
-
(1983)
Theory of Function Spaces
, vol.78
-
-
Triebel, H.1
-
38
-
-
84985309741
-
ρ and by holomorphic Φ(u) in function spaces of Besov-Hardy-Sobolev type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u)
-
ρ and by holomorphic Φ(u) in function spaces of Besov-Hardy-Sobolev type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u), Math. Nachr. 117 (1984), 193-213.
-
(1984)
Math. Nachr.
, vol.117
, pp. 193-213
-
-
Triebel, H.1
-
39
-
-
48549113823
-
Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains
-
G. VERCHOTA, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59(3) (1984), 572-611.
-
(1984)
J. Funct. Anal.
, vol.59
, Issue.3
, pp. 572-611
-
-
Verchota, G.1
|