-
1
-
-
0002785734
-
State Preparation and Measurement
-
For an overview we refer the reader to State Preparation and Measurement, edited by W.P. Schleich and M.G. Raymer, special issue of J. Mod. Opt. 44, 11 (1997); 44, 12 (1997).
-
(1997)
J. Mod. Opt.
, vol.44
, Issue.SPEC. ISSUE
, pp. 11
-
-
Schleich, W.P.1
Raymer, M.G.2
-
2
-
-
0042568917
-
-
For an overview we refer the reader to State Preparation and Measurement, edited by W.P. Schleich and M.G. Raymer, special issue of J. Mod. Opt. 44, 11 (1997); 44, 12 (1997).
-
(1997)
J. Mod. Opt.
, vol.44
, pp. 12
-
-
-
3
-
-
0011614639
-
-
At this point one has to ask whether a finite ensemble of quantum objects can be described by a quantum state. In this respect it has been argued that a quantum state is not a physical property of the object but rather related to the preparation procedure of the device which provides these quantum objects, see A. Peres, Am. J. Phys. 52, 644 (1984).
-
(1984)
Am. J. Phys.
, vol.52
, pp. 644
-
-
Peres, A.1
-
4
-
-
0003755884
-
-
Academic Press, New York
-
C.W. Heistrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976); A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).
-
Quantum Detection and Estimation Theory
, vol.1976
-
-
Heistrom, C.W.1
-
6
-
-
85015732319
-
-
e-print quant-ph/9805020 and the references cited therein
-
For a recent review on state estimation, see V. Bužek, G. Drobny, R. Derka, G. Adam, and H. Wiedemann, e-print quant-ph/9805020 and the references cited therein.
-
-
-
Bužek, V.1
Drobny, G.2
Derka, R.3
Adam, G.4
Wiedemann, H.5
-
10
-
-
0346738895
-
-
J.I. Latorre, P. Pascual, and R. Tarrach, Phys. Rev. Lett. 81, 1351 (1998); J.I. Latorre, P. Pascual, and R. Tarrach, e-print quant-ph/9812068.
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 1351
-
-
Latorre, J.I.1
Pascual, P.2
Tarrach, R.3
-
11
-
-
0346738895
-
-
e-print quant-ph/9812068
-
J.I. Latorre, P. Pascual, and R. Tarrach, Phys. Rev. Lett. 81, 1351 (1998); J.I. Latorre, P. Pascual, and R. Tarrach, e-print quant-ph/9812068.
-
-
-
Latorre, J.I.1
Pascual, P.2
Tarrach, R.3
-
12
-
-
0001025711
-
-
D. Bruß, A. Ekert, and C. Macchiavello, Phys. Rev. Lett. 81, 2598 (1998); D. Bruß and C. Macchiavello, Phys. Lett. A 253, 249 (1999).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 2598
-
-
Bruß, D.1
Ekert, A.2
Macchiavello, C.3
-
13
-
-
0041780063
-
-
D. Bruß, A. Ekert, and C. Macchiavello, Phys. Rev. Lett. 81, 2598 (1998); D. Bruß and C. Macchiavello, Phys. Lett. A 253, 249 (1999).
-
(1999)
Phys. Lett. A
, vol.253
, pp. 249
-
-
Bruß, D.1
Macchiavello, C.2
-
14
-
-
85015767340
-
-
note
-
In principle we could teleport each test qubit to a separate two-level system until we have a finite ensemble of two-level systems in parallel at one instance of time. Only if we are able to store these two-level systems long enough, can we also perform the optimal state estimation described by a POVM of the combined system.
-
-
-
-
15
-
-
4243380547
-
-
A self-learning algorithm was also used earlier to distinguish photon number states of a cavity in R. Schack, A. Breitenbach, and A. Schenzle, Phys. Rev. A 45, 3260 (1992).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 3260
-
-
Schack, R.1
Breitenbach, A.2
Schenzle, A.3
-
17
-
-
85015809715
-
-
note
-
The accuracy of the numerically simulated values f can be expressed in terms of a confidence interval. For our simulations this interval for a 95% confidence lies in the range of 1.5% to 2.5% of the average error f.
-
-
-
|