메뉴 건너뛰기




Volumn 26, Issue 4, 2000, Pages 602-616

Algorithm 807: The SBR toolbox - Software for successive band reduction

Author keywords

Blocked house holder transformations; Symmetric matrices; Tridiagonalization

Indexed keywords


EID: 0012881041     PISSN: 00983500     EISSN: None     Source Type: Journal    
DOI: 10.1145/365723.365736     Document Type: Article
Times cited : (74)

References (15)
  • 3
    • 0001951009 scopus 로고
    • The WY representation for products of Householder matrices
    • BISCHOF, C. AND VAN LOAN, C. 1987. The WY representation for products of Householder matrices. SIAM J. Sci. Stat. Comput. 8, 1 (Jan.), s2s13.
    • (1987) SIAM J. Sci. Stat. Comput. , vol.8 , Issue.1 JAN
    • Bischof, C.1    Van Loan, C.2
  • 5
    • 0039699635 scopus 로고    scopus 로고
    • A framework for symmetric band reduction
    • BISCHOF, C. H., LANG, B., AND SUN, X. 2000. A framework for symmetric band reduction. ACM Trans. Math. Softw. 26, 4 (Dec.).
    • (2000) ACM Trans. Math. Softw. , vol.26 , Issue.4 DEC
    • Bischof, C.H.1    Lang, B.2    Sun, X.3
  • 6
    • 0000257176 scopus 로고
    • Block reduction of matrices to condensed forms for eigenvalue computations
    • DONGARRA, J. J., HAMMARLING, S. J., AND SORENSEN, D. C. 1989. Block reduction of matrices to condensed forms for eigenvalue computations. J. Comput. Appl. Math. 27, 215-227.
    • (1989) J. Comput. Appl. Math. , vol.27 , pp. 215-227
    • Dongarra, J.J.1    Hammarling, S.J.2    Sorensen, D.C.3
  • 7
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press, Baltimore, MD
    • GOLUB, G. H. AND VAN LOAN, C. F. 1996. Matrix Computations. 3rd ed. Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press, Baltimore, MD.
    • (1996) Matrix Computations. 3rd Ed.
    • Golub, G.H.1    Van Loan, C.F.2
  • 8
    • 0032226427 scopus 로고    scopus 로고
    • Toward an efficient parallel eigensolver for dense symmetric matrices
    • HENDRICKSON, B., JESSUP, E., AND SMITH, C. 1999. Toward an efficient parallel eigensolver for dense symmetric matrices. SIAM J. Sci. Comput. 20, 3, 1132-1154.
    • (1999) SIAM J. Sci. Comput. , vol.20 , Issue.3 , pp. 1132-1154
    • Hendrickson, B.1    Jessup, E.2    Smith, C.3
  • 9
    • 0021391296 scopus 로고
    • Banded eigenvalue solvers on vector machines
    • KAUFMAN, L. 1984. Banded eigenvalue solvers on vector machines. ACM Trans. Math. Softw.
    • (1984) ACM Trans. Math. Softw.
    • Kaufman, L.1
  • 11
    • 0038424356 scopus 로고    scopus 로고
    • Band reduction algorithms revisited
    • KAUFMAN, L. 2000. Band reduction algorithms revisited. ACM Trans. Math. Softw. 26, 4 (Dec.).
    • (2000) Acm Trans. Math. Softw. , vol.26 , Issue.4 DEC
  • 12
    • 0040250198 scopus 로고
    • A parallel algorithm for reducing symmetric banded matrices to tridiagonal form
    • LANG, B. 1993. A parallel algorithm for reducing symmetric banded matrices to tridiagonal form. SIAM J. Sci. Comput. 14, 6 (Nov.), 1320-1338.
    • (1993) SIAM J. Sci. Comput. , vol.14 , Issue.6 NOV , pp. 1320-1338
    • Lang, B.1
  • 13
    • 0039122444 scopus 로고
    • A parallelizable eigensolver for real diagonalizable matrices with real eigenvalues
    • Supercomputing Research Center, Institute for Defense Analysis, Bowie, MD
    • LEDERMAN, S. TSAO, A., AND TURNBULL, T. 1991. A parallelizable eigensolver for real diagonalizable matrices with real eigenvalues. Tech. Rep. TR-91-042. Supercomputing Research Center, Institute for Defense Analysis, Bowie, MD.
    • (1991) Tech. Rep. TR-91-042.
    • Lederman, S.1    Tsao, A.2    Turnbull, T.3
  • 14
    • 0039658430 scopus 로고
    • A new method for the tridiagonalization of the symmetric band matrix
    • MURATA, K. AND HORIKOSHI, K. 1975. A new method for the tridiagonalization of the symmetric band matrix. Inf. Proc. Jap. 15, 108-112.
    • (1975) Inf. Proc. Jap. , vol.15 , pp. 108-112
    • Murata, K.1    Horikoshi, K.2
  • 15
    • 0001273713 scopus 로고
    • Tridiagonalization of a symmetric band matrix
    • SCHWARZ, H. R. 1968. Tridiagonalization of a symmetric band matrix. Numer. Math. 12, 231-241.
    • (1968) Numer. Math. , vol.12 , pp. 231-241
    • Schwarz, H.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.