메뉴 건너뛰기




Volumn 118, Issue 1-2, 2000, Pages 323-335

A certain class of rapidly convergent series representations for ζ(2n+1)

Author keywords

11B68; 11M06; 11M35; 33B15; 33E20; 40A30; Bernoulli numbers; Cauchy Hadamard theorem; Dirichlet series; Harmonic numbers; Meromorphic functions; Riemann and Hurwitz Zeta functions; Series representations; Stirling's formula; Trigonometric sums

Indexed keywords


EID: 0012721914     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0377-0427(00)00312-5     Document Type: Article
Times cited : (17)

References (12)
  • 1
    • 21744449094 scopus 로고    scopus 로고
    • New rapidly convergent series representations for ζ(2n+1)
    • Cvijović D., Klinowski J. New rapidly convergent series representations for. ζ(2n+1) Proc. Amer. Math. Soc. 125:1997;1263-1271.
    • (1997) Proc. Amer. Math. Soc. , vol.125 , pp. 1263-1271
    • Cvijović, D.1    Klinowski, J.2
  • 2
    • 84881277236 scopus 로고
    • On the Zeta function values ζ(2k+1) , k=1,2,...
    • Ewell J.A. On the Zeta function values. ζ(2k+1) , k=1,2,... Rocky Mountain J. Math. 25:1995;1003-1012.
    • (1995) Rocky Mountain J. Math. , vol.25 , pp. 1003-1012
    • Ewell, J.A.1
  • 5
    • 0002094881 scopus 로고    scopus 로고
    • Certain families of rapidly convergent series representations for ζ(2n+1)
    • (Research announcement)
    • H.M. Srivastava, Certain families of rapidly convergent series representations for ζ(2n+1) , Math. Sci. Res. Hot-Line 1(6) (1997) 1-6 (Research announcement).
    • (1997) Math. Sci. Res. Hot-Line , vol.1 , Issue.6 , pp. 1-6
    • Srivastava, H.M.1
  • 6
    • 0012754313 scopus 로고    scopus 로고
    • Further series representations for ζ(2n+1)
    • Srivastava H.M. Further series representations for. ζ(2n+1) Appl. Math. Comput. 97:1998;1-15.
    • (1998) Appl. Math. Comput. , vol.97 , pp. 1-15
    • Srivastava, H.M.1
  • 7
    • 22444452320 scopus 로고    scopus 로고
    • Some rapidly converging series for ζ(2n+1)
    • Srivastava H.M. Some rapidly converging series for. ζ(2n+1) Proc. Amer. Math. Soc. 127:1999;385-396.
    • (1999) Proc. Amer. Math. Soc. , vol.127 , pp. 385-396
    • Srivastava, H.M.1
  • 8
    • 0003669011 scopus 로고
    • Oxford University (Clarendon) Press, Oxford and London, 1951; Second Edition, Revised by D.R. Heath-Brown
    • E.C. Titchmarsh, The Theroy of the Riemann Zeta-Function, Oxford University (Clarendon) Press, Oxford and London, 1951; Second Edition, Revised by D.R. Heath-Brown, 1986.
    • (1986) The Theroy of the Riemann Zeta-Function
    • Titchmarsh, E.C.1
  • 9
    • 0000894249 scopus 로고
    • On evaluation of the Dirichlet series at positive integers by q -calculation
    • Tsumura H. On evaluation of the Dirichlet series at positive integers by. q -calculation J. Number Theory. 48:1994;383-391.
    • (1994) J. Number Theory , vol.48 , pp. 383-391
    • Tsumura, H.1
  • 10
    • 0001847762 scopus 로고
    • A proof of Burniside's formula for log Γ(x+1) and certain allied properties of Riemann's ζ -function
    • Wilton J.R. A proof of Burniside's formula for. log Γ(x+1) and certain allied properties of Riemann's ζ -function Messenger Math. 52:1922; / 1923 90-93.
    • (1922) Messenger Math. , vol.52 , pp. 90-93
    • Wilton, J.R.1
  • 12


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.