메뉴 건너뛰기




Volumn 33, Issue 3-4, 1998, Pages 179-197

Some Families of Series Representations for the Riemann ζ(3)

Author keywords

Bernoulli numbers; Catalan s constant; Clausen function; double hypergeometric series; Euler polynomials; Gauss nypergeometnc iunction; generalized Harmonic numbers; generating iunction; series expansion; series transformation; summation formulas; Zeta functions, l h pital s rule

Indexed keywords


EID: 0012662556     PISSN: 14226383     EISSN: 14209012     Source Type: Journal    
DOI: 10.1007/BF03322082     Document Type: Article
Times cited : (18)

References (35)
  • 1
    • 0001934611 scopus 로고
    • Irrationalité de ζ(2) et ζ(3)
    • Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy
    • R. Apéry, Irrationalité de ζ(2) et ζ(3), in Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), pp. 11–13, Astérisque, 61, Soc. Math. France, Paris, 1979.
    • (1978) Journées Arithmétiques de Luminy , pp. 11-13
    • Apéry, R.1
  • 2
    • 84968504313 scopus 로고
    • Some series involving the Riemann Zeta function
    • T.M. Apostol, Some series involving the Riemann Zeta function, Proc. Amer. Math. Soc. 5(1954), 239–243.
    • (1954) Proc. Amer. Math. Soc. , vol.5 , pp. 239-243
    • Apostol, T.M.1
  • 3
    • 0000428944 scopus 로고
    • Euler and the Zeta functions
    • R. Ayoub, Euler and the Zeta functions, Amer. Math. Monthly 81(1974), 1067–1086.
    • (1974) Amer. Math. Monthly , vol.81 , pp. 1067-1086
    • Ayoub, R.1
  • 4
    • 0000426623 scopus 로고
    • Modular transformations and generalizations of several formulae of Ramanujan
    • B.C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math. 7(1977), 147–189.
    • (1977) Rocky Mountain J. Math. , vol.7 , pp. 147-189
    • Berndt, B.C.1
  • 6
    • 44049124291 scopus 로고
    • Riemann Zeta function: Rapidly converging series and integral representations
    • P.L. Butzer and M. Hauss, Riemann Zeta function: Rapidly converging series and integral representations, Appl. Math. Lett. 5(2) (1992), 83–88.
    • (1992) Appl. Math. Lett. , vol.5 , Issue.2 , pp. 83-88
    • Butzer, P.L.1    Hauss, M.2
  • 7
    • 33646988348 scopus 로고
    • Stirling numbers, central factorial numbers, and representations of the Riemann Zeta function
    • P.L. Butzer, C. Markett, and M. Schmidt, Stirling numbers, central factorial numbers, and representations of the Riemann Zeta function, Resultate Math. 19(1991), 257–274.
    • (1991) Resultate Math. , vol.19 , pp. 257-274
  • 8
    • 84882928096 scopus 로고
    • Mémoire sur la transformation des séries et sur quelques intégrales défines
    • E. Catalan, Mémoire sur la transformation des séries et sur quelques intégrales défines, Mém. Acad. Roy. Belg. 33(1865), 1–50.
    • (1865) Mém. Acad. Roy. Belg. , vol.33 , pp. 1-50
  • 9
    • 84882874175 scopus 로고    scopus 로고
    • A reducible case of double hypergeometric series involving the Riemann ζ-function
    • J. Choi and H.M. Srivastava, A reducible case of double hypergeometric series involving the Riemann ζ-function, Bull Korean Math. Soc. 33(1996), 107–110.
    • (1996) Bull Korean Math. Soc. , vol.33 , pp. 107-110
    • Choi, J.1    Srivastava, H.M.2
  • 10
    • 14944349295 scopus 로고
    • Généralisation d’une construction de R. Apéry
    • H. Cohen, Généralisation d’une construction de R. Apéry, Bull Soc. Math. France 109(1981), 269–281.
    • (1981) Bull Soc. Math. France , vol.109 , pp. 269-281
    • Cohen, H.1
  • 11
    • 21744449094 scopus 로고    scopus 로고
    • New rapidly convergent series representations for ζ(2n + 1)
    • D. Cvijovic and J. Klinowski, New rapidly convergent series representations for ζ(2n + 1), Proc. Amer. Math. Soc. 125(1997), 1263–1271.
    • (1997) Proc. Amer. Math. Soc. , vol.125 , pp. 1263-1271
    • Cvijovic, D.1    Klinowski, J.2
  • 12
    • 0012754312 scopus 로고    scopus 로고
    • A note on the values of the Riemann Zeta function at positive odd integers
    • A. Dabrowski, A note on the values of the Riemann Zeta function at positive odd integers, Nieuw Arch. Wisk (4) 14(1996), 199-207.
    • (1996) Nieuw Arch. Wisk , vol.14 , Issue.4 , pp. 199-207
    • Dabrowski, A.1
  • 13
    • 0000833825 scopus 로고
    • A new series representation for ζ(3)
    • J.A. Ewell, A new series representation for ζ(3), Amer. Math. Monthly 97(1990), 219–220.
    • (1990) Amer. Math. Monthly , vol.97 , pp. 219-220
    • J.A, E.1
  • 14
    • 0002300225 scopus 로고
    • On values of the Riemann Zeta function at integral arguments
    • J.A. Ewell, On values of the Riemann Zeta function at integral arguments, Canad. Math. Bull. 34(1991), 60–66.
    • (1991) Canad. Math. Bull. , vol.34 , pp. 60-66
    • J.A, E.1
  • 15
    • 84881277236 scopus 로고
    • On the Zeta function values ζ(2k + 1), k = 1,2, …
    • J.A. Ewell, On the Zeta function values ζ(2k + 1), k = 1,2, …, Rocky Mountain J. Math. 25(1995), 1003–1012.
    • (1995) Rocky Mountain J. Math. , vol.25 , pp. 1003-1012
    • J.A, E.1
  • 16
    • 33646985508 scopus 로고
    • Summations of certain numerical series
    • J.W.L. Glaisher, Summations of certain numerical series, Messenger Math. 42 (1912/ 1913), 19–34.
    • (1912) Messenger Math. , vol.42 , pp. 19-34
    • Glaisher, J.W.L.1
  • 17
    • 0012719129 scopus 로고
    • A claculus of series rearrangements
    • Traub J, (ed), Academic Press, New York and London
    • R.W. Gosper, Jr., A claculus of series rearrangements, in Algorithms and Complexity: New Directions and Recent Results (J. Traub, Editor), pp. 121–151, Academic Press, New York and London, 1976.
    • (1976) Algorithms and Complexity: New Directions and Recent Results , pp. 121-151
    • Gosper, R.W.1
  • 18
    • 0011682696 scopus 로고
    • Die Werte der Riemannschen Zetafunktion an ungeraden Argumen-stellen
    • E. Grosswald, Die Werte der Riemannschen Zetafunktion an ungeraden Argumen-stellen, Nachr. Akad. Wiss. Göttingen Math.—Phys. Kl.II1970(1970), 9–13.
    • (1970) Nachr. Akad. Wiss. Göttingen Math.—Phys. , pp. 9-13
    • Grosswald, E.1
  • 20
    • 33646980429 scopus 로고
    • Application of the theory of sum-formulae to the investigation of a class of one-valued analytical functions in the theory of numbers
    • N.S. Koshliakov, Application of the theory of sum-formulae to the investigation of a class of one-valued analytical functions in the theory of numbers, Messenger Math. 58(1928/1929), 1–23.
    • (1928) Messenger Math. , vol.58 , pp. 1-23
    • Koshliakov, N.S.1
  • 21
    • 4243737968 scopus 로고
    • Some new identities for ζi(k)
    • D. Leshchiner, Some new identities for ζi(k), J. Number Theory 13(1981), 355–362.
    • (1981) J. Number Theory , vol.13 , pp. 355-362
    • Leshchiner, D.1
  • 24
    • 0012701681 scopus 로고
    • Ray-Singer torsion, topological field theories and the Riemann Zeta function at s = 3
    • Osborn H, (ed), Plenum Press, New York and London
    • C. Nash and D. O’Connor, Ray-Singer torsion, topological field theories and the Riemann Zeta function at s = 3, in Low-Dimensional Topology and Quantum Field Theory(Proceedings of a NATO Advanced Research Workshop held at the Isaac Newton Institute at Cambridge, U.K.; September 6–12, 1992) (H. Osborn, Editor), pp. 279–288, Plenum Press, New York and London, 1993.
    • (1993) Low-Dimensional Topology and Quantum Field Theory , pp. 279-288
    • Nash, C.1    O’Connor, D.2
  • 25
    • 21844509292 scopus 로고
    • Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann Zeta function
    • C. Nash and D. O’Connor, Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann Zeta function, J. Math. Phys. 36(1995), 1462–1505.
    • (1995) J. Math. Phys. , vol.36 , pp. 1462-1505
    • Nash, C.1    O’Connor, D.2
  • 27
    • 84963015857 scopus 로고
    • Notes on Riemann’s ζ-function
    • V. Ramaswami, Notes on Riemann’s ζ-function, J. London Math. Soc. 9(1934), 165–169.
    • (1934) J. London Math. Soc. , vol.9 , pp. 165-169
    • Ramaswami, V.1
  • 28
    • 0002676205 scopus 로고
    • A unified presentation of certain classes of series of the Riemann Zeta function
    • H.M. Srivastava, A unified presentation of certain classes of series of the Riemann Zeta function, Riv. Mat. Univ. Parma (4) 14(1988), 1-23.
    • (1988) Riv. Mat. Univ. Parma , vol.14 , Issue.4 , pp. 1-23
    • Srivastava, H.M.1
  • 29
    • 0003791753 scopus 로고
    • Halsted Press, (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto
    • H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1985.
    • (1985) Multiple Gaussian Hypergeometric Series
    • Srivastava, H.M.1    Karlsson, P.W.2
  • 30
    • 84861233986 scopus 로고
    • A simple reducible case of double hypergeometric series involving Catalan’s constant and Riemann’s ζ-function
    • H.M. Srivastava and E.A. Miller, A simple reducible case of double hypergeometric series involving Catalan’s constant and Riemann’s ζ-function, Internat. J. Math. Ed. sci. Tech. 21(1990), 375–377.
    • (1990) Internat. J. Math. Ed. sci. Tech. , vol.21 , pp. 375-377
    • Srivastava, H.M.1    Miller, E.A.2
  • 31
    • 0039966060 scopus 로고
    • Some formulas for the Riemann Zeta function at odd integer argument resulting from Fourier expansions of the Epstein Zeta function
    • A. Terras, Some formulas for the Riemann Zeta function at odd integer argument resulting from Fourier expansions of the Epstein Zeta function, Ada Arith. 29(1976), 181–189.
    • (1976) Ada Arith. , vol.29 , pp. 181-189
    • Terras, A.1
  • 32
    • 0000894249 scopus 로고
    • On evaluation of the Dirichlet series at positive integers by q- calculation
    • H. Tsumura, On evaluation of the Dirichlet series at positive integers by q- calculation, J. Number Theory48(1994), 383–391.
    • (1994) J. Number Theory , vol.48 , pp. 383-391
    • Tsumura, H.1
  • 33
    • 0001847762 scopus 로고
    • A proof of Burnside’s formula for log Γ(x +1) and certain allied properties of Riemann’s ζ-function
    • J.R. Wilton, A proof of Burnside’s formula for log Γ(x +1) and certain allied properties of Riemann’s ζ-function, Messenger Math. 52(1922/1923), 90–93.
    • (1922) Messenger Math. , vol.52 , pp. 90-93
    • Wilton, J.R.1
  • 34
    • 84881570063 scopus 로고
    • Some series representations of Γ(2n + 1)
    • N.-Y. Zhang and K.S. Williams, Some series representations of Γ(2n + 1), Rocky Mountain J. Math. 23(1993), 1581–1592.
    • (1993) Rocky Mountain J. Math. , vol.23 , pp. 1581-1592
    • Zhang, N.-Y.1    Williams, K.S.2
  • 35
    • 84882849150 scopus 로고
    • Some infinite series involving the Riemann Zeta function
    • Srivastava HM, Rassias Th M, (eds), Hadronic Press, Palm Harbor, Florida
    • N.-Y. Zhang and K.S. Williams, Some infinite series involving the Riemann Zeta function, in Analysis, Geometry and Groups: A Riemann Legacy Volume (H.M. Srivastava and Th. M. Rassias, Editors), Part II, pp. 691–712, Hadronic Press, Palm Harbor, Florida, 1993.
    • (1993) Analysis, Geometry and Groups: A Riemann Legacy Volume , pp. 691-712
    • Zhang, N.-Y.1    Williams, K.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.