-
1
-
-
0040359936
-
A Harry Dym class of bihamiltonian evolution equations
-
Abellanas L., Galindo A. A Harry Dym class of bihamiltonian evolution equations. Phys. Lett. A. 107:1985;159-160.
-
(1985)
Phys. Lett. A
, vol.107
, pp. 159-160
-
-
Abellanas, L.1
Galindo, A.2
-
2
-
-
0011125042
-
On the Bianchi-Bäcklund construction for affine minimal surfaces
-
Antonowicz M. On the Bianchi-Bäcklund construction for affine minimal surfaces. J. Phys. A: Math. Gen. 20:1987;1989-1996.
-
(1987)
J. Phys. A: Math. Gen.
, vol.20
, pp. 1989-1996
-
-
Antonowicz, M.1
-
5
-
-
0038885109
-
A system with a recursion operator but one higher local symmetry
-
Bilge A.H. A system with a recursion operator but one higher local symmetry. Lie Groups Appl. 1:1994;132-139.
-
(1994)
Lie Groups Appl.
, vol.1
, pp. 132-139
-
-
Bilge, A.H.1
-
6
-
-
0000982065
-
Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal
-
Boussinesq J. Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal. C.R. Acad. Sci. Paris. 73:1871;256-260.
-
(1871)
C.R. Acad. Sci. Paris
, vol.73
, pp. 256-260
-
-
Boussinesq, J.1
-
7
-
-
0001864672
-
Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond
-
Boussinesq J. Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17:(2):1872;55-108.
-
(1872)
J. Math. Pures Appl.
, vol.17
, Issue.2
, pp. 55-108
-
-
Boussinesq, J.1
-
8
-
-
0001757540
-
Essai sur la théorie des eaux courants
-
Boussinesq J. Essai sur la théorie des eaux courants. Mém. Acad. Sci. Inst. Nat. France. 23:(1):1877;1-680.
-
(1877)
Mém. Acad. Sci. Inst. Nat. France
, vol.23
, Issue.1
, pp. 1-680
-
-
Boussinesq, J.1
-
9
-
-
0010833267
-
An algebraic representation of the affine Bäcklund transformation
-
Buyske S.G. An algebraic representation of the affine Bäcklund transformation. Geom. Dedicata. 44:1992;7-16.
-
(1992)
Geom. Dedicata
, vol.44
, pp. 7-16
-
-
Buyske, S.G.1
-
10
-
-
2542480327
-
Pseudospherical surfaces and evolution equations
-
Chern S., Tenenblat K. Pseudospherical surfaces and evolution equations. Stud. Appl. Math. 74:1986;55-83.
-
(1986)
Stud. Appl. Math.
, vol.74
, pp. 55-83
-
-
Chern, S.1
Tenenblat, K.2
-
11
-
-
0000534486
-
An analogue of Bäcklund's theorem in affine geometry
-
Chern S., Terng C.L. An analogue of Bäcklund's theorem in affine geometry. Rocky Mountain J. Math. 10:1980;105-124.
-
(1980)
Rocky Mountain J. Math.
, vol.10
, pp. 105-124
-
-
Chern, S.1
Terng, C.L.2
-
13
-
-
0346072539
-
The zero curvature formulation of the Boussinesq equation
-
Das A., Huang W.-J., Roy S. The zero curvature formulation of the Boussinesq equation. Phys. Lett. A. 153:1991;186-190.
-
(1991)
Phys. Lett. A
, vol.153
, pp. 186-190
-
-
Das, A.1
Huang, W.-J.2
Roy, S.3
-
16
-
-
51249165136
-
Local theory of affine hypersurfaces
-
Flanders H. Local theory of affine hypersurfaces. J. Analyse Math. 15:1965;353-387.
-
(1965)
J. Analyse Math.
, vol.15
, pp. 353-387
-
-
Flanders, H.1
-
17
-
-
0023542072
-
Symmetries and integrability
-
Fokas A.S. Symmetries and integrability. Stud. Appl. Math. 77:1987;253-299.
-
(1987)
Stud. Appl. Math.
, vol.77
, pp. 253-299
-
-
Fokas, A.S.1
-
18
-
-
36749105041
-
Factorization of operators. II
-
Fordy A.P., Gibbons J. Factorization of operators. II. J. Math. Phys. 22:1981;1170-1175.
-
(1981)
J. Math. Phys.
, vol.22
, pp. 1170-1175
-
-
Fordy, A.P.1
Gibbons, J.2
-
19
-
-
0003831772
-
On integrable evolution equations in commutative and noncommutative variables
-
University of Minnesota
-
Foursov M.V. On integrable evolution equations in commutative and noncommutative variables. Thesis. 1999;University of Minnesota.
-
(1999)
Thesis
-
-
Foursov, M.V.1
-
21
-
-
0002571840
-
On differential equations describing pseudospherical surfaces
-
Kamran N., Tenenblat K. On differential equations describing pseudospherical surfaces. J. Differential Equations. 115:1995;75-98.
-
(1995)
J. Differential Equations
, vol.115
, pp. 75-98
-
-
Kamran, N.1
Tenenblat, K.2
-
22
-
-
36749117832
-
A simple model of the integrable Hamiltonian equation
-
Magri F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19:1978;1156-1162.
-
(1978)
J. Math. Phys.
, vol.19
, pp. 1156-1162
-
-
Magri, F.1
-
24
-
-
33947180234
-
A symmetry approach to the classification of nonlinear equations. Complete lists of integrable systems
-
Mikhailov A.V., Shabat A.B., Yamilov R.I. A symmetry approach to the classification of nonlinear equations. Complete lists of integrable systems. Russian Math. Surveys. 4:1987;1-63.
-
(1987)
Russian Math. Surveys
, vol.4
, pp. 1-63
-
-
Mikhailov, A.V.1
Shabat, A.B.2
Yamilov, R.I.3
-
25
-
-
0003317855
-
Applications of Lie Groups to Differential Equations
-
New York: Springer
-
Olver P.J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics. 107:1993;Springer, New York.
-
(1993)
Graduate Texts in Mathematics
, vol.107
-
-
Olver, P.J.1
-
26
-
-
0032478456
-
Integrable evolution equations on associative algebras
-
Olver P.J., Sokolov V.V. Integrable evolution equations on associative algebras. Comm. Math. Phys. 19:1998;245-268.
-
(1998)
Comm. Math. Phys.
, vol.19
, pp. 245-268
-
-
Olver, P.J.1
Sokolov, V.V.2
-
27
-
-
0000545519
-
Pseudo-spherical surfaces and integrability of evolution equations
-
Erratum: J. Differential Equations153 (1999), 223-224
-
Reyes E.G. Pseudo-spherical surfaces and integrability of evolution equations. J. Differential Equations. 147:1998;195-230. Erratum: J. Differential Equations153 (1999), 223-224.
-
(1998)
J. Differential Equations
, vol.147
, pp. 195-230
-
-
Reyes, E.G.1
-
28
-
-
0034347370
-
Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces
-
Reyes E.G. Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces. J. Math. Phys. 41:2000;2968-2989.
-
(2000)
J. Math. Phys.
, vol.41
, pp. 2968-2989
-
-
Reyes, E.G.1
-
29
-
-
0034312485
-
Some geometric aspects of integrability of differential equations in two independent variables
-
Reyes E.G. Some geometric aspects of integrability of differential equations in two independent variables. Acta Appl. Math. 64:2000;75-109.
-
(2000)
Acta Appl. Math.
, vol.64
, pp. 75-109
-
-
Reyes, E.G.1
-
30
-
-
0001445382
-
On the integrability of homogeneous scalar evolution equations
-
Sanders J.A., Wang J.P. On the integrability of homogeneous scalar evolution equations. J. Differential Equations. 147:1998;410-434.
-
(1998)
J. Differential Equations
, vol.147
, pp. 410-434
-
-
Sanders, J.A.1
Wang, J.P.2
-
31
-
-
0001719572
-
Soliton equations and pseudospherical surfaces
-
Sasaki A. Soliton equations and pseudospherical surfaces. Nuclear Phys. B. 154:1979;343-357.
-
(1979)
Nuclear Phys. B
, vol.154
, pp. 343-357
-
-
Sasaki, A.1
-
32
-
-
0042993246
-
Weak nonlocalities in evolution equations
-
Svinolupov S.I., Sokolov V.V. Weak nonlocalities in evolution equations. Math. Notes. 48:1990;1234-1239.
-
(1990)
Math. Notes
, vol.48
, pp. 1234-1239
-
-
Svinolupov, S.I.1
Sokolov, V.V.2
-
33
-
-
0003258131
-
Transformations of Manifolds and Applications to Differential Equations
-
Harlow: Longman
-
Tenenblat K. Transformations of Manifolds and Applications to Differential Equations. Pitman Monographs and Surveys Pure Appl. Math. 93:1998;Longman, Harlow.
-
(1998)
Pitman Monographs and Surveys Pure Appl. Math.
, vol.93
-
-
Tenenblat, K.1
-
35
-
-
36749112076
-
The Painlevé property for partial differential equations
-
Weiss J., Tabor M., Carnevale G. The Painlevé property for partial differential equations. J. Math. Phys. 24:1983;522-526.
-
(1983)
J. Math. Phys.
, vol.24
, pp. 522-526
-
-
Weiss, J.1
Tabor, M.2
Carnevale, G.3
-
36
-
-
0009372301
-
A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I
-
Zakharov V.E., Shabat A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Func. Anal. Appl. 8:1974;226-235.
-
(1974)
Func. Anal. Appl.
, vol.8
, pp. 226-235
-
-
Zakharov, V.E.1
Shabat, A.B.2
|