메뉴 건너뛰기




Volumn 5, Issue 1, 2001, Pages 13-22

The harmonic analysis of polygons and Napoleon's theorem

Author keywords

Finite Fourier series; Polygon transformation

Indexed keywords


EID: 0012404085     PISSN: 14338157     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (10)

References (7)
  • 1
    • 0001562935 scopus 로고
    • Una proprieta degli n-agoni che si ottengono transformando in una affinita un n-agono regolare
    • A. Barlotti: Una proprieta degli n-agoni che si ottengono transformando in una affinita un n-agono regolare. Boll. Un. Mat. Ital. 10, 96-98 (1955)
    • (1955) Boll. Un. Mat. Ital , vol.10 , pp. 96-98
    • Barlotti, A.1
  • 2
    • 0012372924 scopus 로고
    • Geometry of polygons in the complex plane
    • J. Douglas: Geometry of polygons in the complex plane. J. of. Math. and Phys. 19, 93-130 (1940)
    • (1940) J. of. Math. and Phys , vol.19 , pp. 93-130
    • Douglas, J.1
  • 3
    • 0042746488 scopus 로고    scopus 로고
    • On the theorem of Napoleon and related topics
    • H. Martini: On the theorem of Napoleon and related topics. Math. Semesterber. 43, 47-64 (1996)
    • (1996) Math. Semesterber , vol.43 , pp. 47-64
    • Martini, H.1
  • 5
    • 84962984406 scopus 로고
    • Some remarks on polygons
    • B.H. Neumann: Some remarks on polygons. J. London Math. Soc. 16, 230-245 (1941)
    • (1941) J. London Math. Soc , vol.16 , pp. 230-245
    • Neumann, B.H.1
  • 6
    • 84863977134 scopus 로고
    • O jedné větě pro mnohóuhelníky rovinné
    • K. Petr: O jedné větě pro mnohóuhelníky rovinné. Čas. pro pěst. mat. a fyz. 34, 166-172 (1905)
    • (1905) Čas. pro pěst. mat. a fyz , vol.34 , pp. 166-172
    • Petr, K.1
  • 7
    • 0007191878 scopus 로고
    • The finite Fourier series and elementary geometry
    • I.J. Schoenberg: The finite Fourier series and elementary geometry. Amer. Math. Monthly 57, 390-404 (1950)
    • (1950) Amer. Math. Monthly , vol.57 , pp. 390-404
    • Schoenberg, I.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.