-
1
-
-
0004132817
-
-
Touchstone/Simon&Schuster, New York
-
M.Mitchell Waldrop, Complexity, Touchstone/Simon&Schuster, New York, 1992.
-
(1992)
Complexity
-
-
Waldrop, M.M.1
-
2
-
-
0038893441
-
The latest C-theory
-
C-theories are cybernetics (appearing in the 1960s), catastrophe theory (appearing in the 1970s) and the chaos theory (appearing in the 1980s)
-
S.H. Strogatz, The Latest C-Theory, Nature 387, 771-772 (1997); C-theories are cybernetics (appearing in the 1960s), catastrophe theory (appearing in the 1970s) and the chaos theory (appearing in the 1980s).
-
(1997)
Nature
, vol.387
, pp. 771-772
-
-
Strogatz, S.H.1
-
4
-
-
0003474825
-
-
Addison-Wesley Publ. Co., Reading, MA
-
G.A. Cowan, D. Pines and D. Meltzer (Editors), Complexity: Metaphors, Models and Reality, Addison-Wesley Publ. Co., Reading, MA, 1994.
-
(1994)
Complexity: Metaphors, Models and Reality
-
-
Cowan, G.A.1
Pines, D.2
Meltzer, D.3
-
6
-
-
0004255608
-
-
Alfred A. Knopf, Inc., New York
-
M. Crichton, The Lost World, Alfred A. Knopf, Inc., New York, 1995, p. 3. This is a sequel to the bestselling novel of the same author "Jurassic Park" (Alfred A. Knopf, Inc., New York, 1990), which was inspired by Sir Arthur Conan Doyle's novel of the same title.
-
(1995)
The Lost World
, pp. 3
-
-
Crichton, M.1
-
7
-
-
0003847310
-
-
Harvard University Press, Cambridge, MA
-
G. Birkhoff, Aesthetic Measure, Harvard University Press, Cambridge, MA, 1933.
-
(1933)
Aesthetic Measure
-
-
Birkhoff, G.1
-
11
-
-
0002164238
-
Are the concepts of chemistry all fuzzy?
-
D.H. Rouvray, Ed., Wiley, New York
-
D.H. Rouvray, Are the Concepts of Chemistry all Fuzzy?, in: Concepts in Chemistry - A Contemporary Challenge, D.H. Rouvray, Ed., Wiley, New York, 1997, pp. 1-15
-
(1997)
Concepts in Chemistry - A Contemporary Challenge
, pp. 1-15
-
-
Rouvray, D.H.1
-
13
-
-
0343071989
-
Information theory, distance matrix and molecular branching
-
D. Bonchev and N. Trinajstić, Information Theory, Distance Matrix and Molecular Branching, J. Chem. Phys. 67, 4517-4533 (1977).
-
(1977)
J. Chem. Phys.
, vol.67
, pp. 4517-4533
-
-
Bonchev, D.1
Trinajstić, N.2
-
14
-
-
84987142269
-
Topological characterization of cyclic structures
-
D. Bonchev, Ov. Mekenyan and N. Trinajstić, Topological Characterization of Cyclic Structures, Int. J. Quantum Chem., 17, 845-893 (1980).
-
(1980)
Int. J. Quantum Chem.
, vol.17
, pp. 845-893
-
-
Bonchev, D.1
Mekenyan, Ov.2
Trinajstić, N.3
-
15
-
-
0000524226
-
The first general index of molecular complexity
-
S.H. Bertz, The First General Index of Molecular Complexity, J. Am. Chem. Soc. 103, 3599-3601 (1981).
-
(1981)
J. Am. Chem. Soc.
, vol.103
, pp. 3599-3601
-
-
Bertz, S.H.1
-
16
-
-
0000918669
-
Convergence, molecular complexity and synthetic analysis
-
S.H. Bertz, Convergence, Molecular Complexity and Synthetic Analysis, J. Am. Chem. Soc. 104, 5801-580/3 (1982).
-
(1982)
J. Am. Chem. Soc.
, vol.104
, pp. 5801-5803
-
-
Bertz, S.H.1
-
17
-
-
0002183826
-
On the complexity of graphs and molecules
-
S.H. Bertz, On the Complexity of Graphs and Molecules, Bull. Math. Biol. 45, 849-855 (1983).
-
(1983)
Bull. Math. Biol.
, vol.45
, pp. 849-855
-
-
Bertz, S.H.1
-
18
-
-
0001787983
-
A mathematical model of molecular complexity
-
R.B. King, Ed., Elsevier, Amsterdam
-
S.H. Bertz, A Mathematical Model of Molecular Complexity, in: Chemical Applications of Topology and Graph Theory, R.B. King, Ed., Elsevier, Amsterdam, 1983, pp. 206-221 ; see also E de Bono, Simplicity, Viking, London, 1998.
-
(1983)
Chemical Applications of Topology and Graph Theory
, pp. 206-221
-
-
Bertz, S.H.1
-
19
-
-
0006074517
-
-
Viking, London
-
S.H. Bertz, A Mathematical Model of Molecular Complexity, in: Chemical Applications of Topology and Graph Theory, R.B. King, Ed., Elsevier, Amsterdam, 1983, pp. 206-221 ; see also E de Bono, Simplicity, Viking, London, 1998.
-
(1998)
Simplicity
-
-
De Bono, E.1
-
20
-
-
0000520634
-
Structural complexity and molecular properties of cyclic systems with acyclic branches
-
O. Mekenyan, D. Bonchev and N. Trinajstić, Structural Complexity and Molecular Properties of Cyclic Systems with Acyclic Branches, Croat. Chem. Acta 56, 237-261 (1983).
-
(1983)
Croat. Chem. Acta
, vol.56
, pp. 237-261
-
-
Mekenyan, O.1
Bonchev, D.2
Trinajstić, N.3
-
21
-
-
0001588769
-
On the topological complexity of chemical systems
-
R.B. King and D.H. Rouvray, Eds., Elsevier, Amsterdam
-
D. Bonchev and O.E. Polansky, On the Topological Complexity of Chemical Systems, in: Graph Theory and Topology in Chemistry, R.B. King and D.H. Rouvray, Eds., Elsevier, Amsterdam, 1987, pp. 126-158.
-
(1987)
Graph Theory and Topology in Chemistry
, pp. 126-158
-
-
Bonchev, D.1
Polansky, O.E.2
-
22
-
-
0023202542
-
Use of molecular complexity indices in predictive pharmacology and toxicology: A QSAR approach
-
19887
-
S.C. Basak, Use of Molecular Complexity Indices in Predictive Pharmacology and Toxicology: A QSAR Approach, Med. Sci. Res. 15, 605-609 (19887).
-
Med. Sci. Res.
, vol.15
, pp. 605-609
-
-
Basak, S.C.1
-
23
-
-
0011416646
-
A complexity measure for chemical compounds
-
B.L. Mil'man, A Complexity Measure for Chemical Compounds, J. Struct. Chem. 29, 957-960 (1988).
-
(1988)
J. Struct. Chem.
, vol.29
, pp. 957-960
-
-
Mil'man, B.L.1
-
24
-
-
0028674316
-
Complexity and emergence in drug research
-
L.B. Kier and B. Testa, Complexity and Emergence in Drug Research, Adv. Drug Res. 26, 1-43 (1995)
-
(1995)
Adv. Drug Res.
, vol.26
, pp. 1-43
-
-
Kier, L.B.1
Testa, B.2
-
25
-
-
0012476774
-
Complexity of some interesting (chemical) graphs
-
S. Nikolić, N. Trinajstić, A. Jurić, Z. Mihalić and G. Krilov, Complexity of Some Interesting (Chemical) Graphs, Croat. Chem. Acta 69, 883-897 (1996).
-
(1996)
Croat. Chem. Acta
, vol.69
, pp. 883-897
-
-
Nikolić, S.1
Trinajstić, N.2
Jurić, A.3
Mihalić, Z.4
Krilov, G.5
-
26
-
-
0003507444
-
-
CRC Press, Boca Raton, FL
-
O.E Temkin, A.V. Zeigarnik and D. Bonchev, Chemical Reaction Networks: A Graph-Theoretical Approach, CRC Press, Boca Raton, FL, 1996.
-
(1996)
Chemical Reaction Networks: A Graph-theoretical Approach
-
-
Temkin, O.E.1
Zeigarnik, A.V.2
Bonchev, D.3
-
27
-
-
0013605851
-
The concept of complexity in chemistry
-
D.H. Rouvray, Ed., Wiley, New York
-
D. Bonchev and W.A. Seitz, The Concept of Complexity in Chemistry, in: Concepts in Chemistry - A Contemporary Challenge, D.H. Rouvray, Ed., Wiley, New York, 1997, pp. 353-381.
-
(1997)
Concepts in Chemistry - A Contemporary Challenge
, pp. 353-381
-
-
Bonchev, D.1
Seitz, W.A.2
-
28
-
-
0002398590
-
Novel indices for the topological complexity of molecules
-
D. Bonchev, Novel Indices for the Topological Complexity of Molecules, SAR QSAR Environ. Res. 7, 23-43 (1997).
-
(1997)
SAR QSAR Environ. Res.
, vol.7
, pp. 23-43
-
-
Bonchev, D.1
-
30
-
-
0040671470
-
Life, information theory and topology
-
N. Rashevsky, Life, Information Theory and Topology, Bull. Math.Biophys. 27, 379-423 (1955).
-
(1955)
Bull. Math.Biophys.
, vol.27
, pp. 379-423
-
-
Rashevsky, N.1
-
31
-
-
0001664648
-
On the number of spanning trees in a molecular graph
-
R.B. Mallion, On the Number of Spanning Trees in a Molecular Graph, Chem. Phys. Lett. 36, 170-174 (1975).
-
(1975)
Chem. Phys. Lett.
, vol.36
, pp. 170-174
-
-
Mallion, R.B.1
-
32
-
-
0011561063
-
Counting the spanning trees of a labelled molecular-graph
-
I. Gutman, R.B. Mallion and J.W.Essam, Counting the Spanning Trees of a Labelled Molecular-Graph, Mol. Phys. 50, 859-877 (1983).
-
(1983)
Mol. Phys.
, vol.50
, pp. 859-877
-
-
Gutman, I.1
Mallion, R.B.2
Essam, J.W.3
-
33
-
-
3042796374
-
Counting the spanning trees of labelled, planar molecular graphs embedded on the surface on a sphere
-
R.B. King and D.H. Rouvray, Eds., Elsevier, Amsterdam
-
B. O'Leary and R.B. Mallion, Counting the Spanning Trees of Labelled, Planar Molecular Graphs Embedded on the Surface on a Sphere, in: Graph Theory and Topology in Chemistry, R.B. King and D.H. Rouvray, Eds., Elsevier, Amsterdam, 1987, pp. 544-551.
-
(1987)
Graph Theory and Topology in Chemistry
, pp. 544-551
-
-
O'Leary, B.1
Mallion, R.B.2
-
34
-
-
0011627435
-
Some graph-theoretical aspects of simple "ring-current" calculations on conjugated systems
-
R.B. Mallion, Some Graph-theoretical Aspects of Simple "Ring-Current" Calculations on Conjugated Systems, Proc. Roy. Soc. (London) A341, 429-449 (1975).
-
(1975)
Proc. Roy. Soc. (London)
, vol.A341
, pp. 429-449
-
-
Mallion, R.B.1
-
35
-
-
49249150528
-
Ring current theories in nuclear magnetic resonance
-
J.W. Emsley, J. Feeney and L.H. Sutcliffe, Eds., Pergamon Press, Oxford
-
C.W. Haig and R.B. Mallion, Ring Current Theories in Nuclear Magnetic Resonance, in: Progress in Nuclear Magnetic Resonance Spectroscopy, J.W. Emsley, J. Feeney and L.H. Sutcliffe, Eds., Pergamon Press, Oxford, 1979/1980, Vol.-13, pp. 303-344.
-
(1979)
Progress in Nuclear Magnetic Resonance Spectroscopy
, vol.13
, pp. 303-344
-
-
Haig, C.W.1
Mallion, R.B.2
-
36
-
-
0011689179
-
Rationalisation of relative "ring-current" sizes in polycyclic conjugated hydrocarbons
-
C.W. Haig and R.B. Mallion, Rationalisation of Relative "Ring-Current" Sizes in Polycyclic Conjugated Hydrocarbons, Croat. Chem. Acta 62, 1-26 (1989).
-
(1989)
Croat. Chem. Acta
, vol.62
, pp. 1-26
-
-
Haig, C.W.1
Mallion, R.B.2
-
37
-
-
0002642279
-
The concept of ring currents
-
D.H. Rouvray, Ed., Wiley, New York
-
J.A.N.F. Gomes and R.B. Mallion, The Concept of Ring Currents, in: Concepts in Chemistry: A Contemporary Challenge, D.H. Rouvray, Ed., Wiley, New York, 1997, pp. 205-253.
-
(1997)
Concepts in Chemistry: A Contemporary Challenge
, pp. 205-253
-
-
Gomes, J.A.N.F.1
Mallion, R.B.2
-
38
-
-
0141979985
-
Ring currents and proton magnetic resonance in aromatic molecules
-
R. McWeeny, Ring Currents and Proton Magnetic Resonance in Aromatic Molecules, Mol. Phys. 1, 311-321 (1958).
-
(1958)
Mol. Phys.
, vol.1
, pp. 311-321
-
-
McWeeny, R.1
-
39
-
-
0039486131
-
Laplacian matrices of graphs
-
A. Graovac, Ed., Elsevier, Amsterdam
-
B. Mohar, Laplacian Matrices of Graphs, in: MATH/CHEM/COMP 1988, A. Graovac, Ed., Elsevier, Amsterdam, 1989, pp. 1-8.
-
(1989)
MATH/CHEM/COMP 1988
, pp. 1-8
-
-
Mohar, B.1
-
40
-
-
0003925348
-
-
North-Holland, Amsterdam
-
D.M. Cvetković, M. Doob, I. Gutman and A. Torgašev, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1988, p. 125.
-
(1988)
Recent Results in the Theory of Graph Spectra
, pp. 125
-
-
Cvetković, D.M.1
Doob, M.2
Gutman, I.3
Torgašev, A.4
-
41
-
-
0004167131
-
-
Johann Ambrosius Barth Verlag, Heidelberg, section 1.5
-
D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, 3rd revised & enlarged edition, Johann Ambrosius Barth Verlag, Heidelberg, 1995, section 1.5.
-
(1995)
Spectra of Graphs, 3rd Revised & Enlarged Edition
-
-
Cvetković, D.M.1
Doob, M.2
Sachs, H.3
-
42
-
-
0002398590
-
Novel indices for the topological complexity of molecules
-
D. Bonchev, Novel Indices for the Topological Complexity of Molecules, SAR QSAR Environ. Res. 7, 23-43 (1997).
-
(1997)
SAR QSAR Environ. Res.
, vol.7
, pp. 23-43
-
-
Bonchev, D.1
-
44
-
-
0038893439
-
-
S. Bertz, e-mail of March 16th, 1999
-
S. Bertz, e-mail of March 16th, 1999.
-
-
-
-
45
-
-
3042712352
-
An algorithmic approach to the number of spanning trees in buckminsterfullerene
-
Erratum: ibid. 16, 389-390 (1994)
-
P.E. John and R.B. Mallion, An Algorithmic Approach to the Number of Spanning Trees in Buckminsterfullerene, J. Math. Chem. 15, 261-271 (1994); Erratum: ibid. 16, 389-390 (1994).
-
(1994)
J. Math. Chem.
, vol.15
, pp. 261-271
-
-
John, P.E.1
Mallion, R.B.2
-
46
-
-
0027929267
-
On the number of spanning trees in fullerenes
-
Z. Mihalić and N. Trinajstić, On the Number of Spanning Trees in Fullerenes, Fullerene Sci. Technol. 2, 89-95 (1994).
-
(1994)
Fullerene Sci. Technol.
, vol.2
, pp. 89-95
-
-
Mihalić, Z.1
Trinajstić, N.2
-
48
-
-
0041037845
-
On topological indices, boiling points and cycloalkanes
-
in press
-
While this manuscript was submitted, refereed and revised, Rücker and Rücker (e.g., G. Rücker and C. Rücker, On Topological Indices, Boiling Points and Cycloalkanes, J. Chem. Inf. Comput. Sci., in press; Walk Counts, Labyrinthicity and Complexity of Acyclic and Cyclic Graphs and Molecules, J. Chem. Inf. Comput. Sci., in press) advocated the use of the total walk count (twc) as a molecular complexity measure. These authors claim that twc is easy to compute (e.g., G. Rücker and C. Rücker, Counts of All Walks as Atomic and Molecular Descriptors, J. Chem. Inf. Comput. Sci. 33, 683-695 (1993)) and is dependent on size, branching, cyclicity, symmetry, heteroatoms and heterobonds.
-
J. Chem. Inf. Comput. Sci.
-
-
Rücker, G.1
Rücker, C.2
-
49
-
-
0027658970
-
Walk counts, labyrinthicity and complexity of acyclic and cyclic graphs and molecules
-
in press
-
While this manuscript was submitted, refereed and revised, Rücker and Rücker (e.g., G. Rücker and C. Rücker, On Topological Indices, Boiling Points and Cycloalkanes, J. Chem. Inf. Comput. Sci., in press; Walk Counts, Labyrinthicity and Complexity of Acyclic and Cyclic Graphs and Molecules, J. Chem. Inf. Comput. Sci., in press) advocated the use of the total walk count (twc) as a molecular complexity measure. These authors claim that twc is easy to compute (e.g., G. Rücker and C. Rücker, Counts of All Walks as Atomic and Molecular Descriptors, J. Chem. Inf. Comput. Sci. 33, 683-695 (1993)) and is dependent on size, branching, cyclicity, symmetry, heteroatoms and heterobonds.
-
J. Chem. Inf. Comput. Sci.
-
-
-
50
-
-
0027658970
-
Counts of all walks as atomic and molecular descriptors
-
While this manuscript was submitted, refereed and revised, Rücker and Rücker (e.g., G. Rücker and C. Rücker, On Topological Indices, Boiling Points and Cycloalkanes, J. Chem. Inf. Comput. Sci., in press; Walk Counts, Labyrinthicity and Complexity of Acyclic and Cyclic Graphs and Molecules, J. Chem. Inf. Comput. Sci., in press) advocated the use of the total walk count (twc) as a molecular complexity measure. These authors claim that twc is easy to compute (e.g., G. Rücker and C. Rücker, Counts of All Walks as Atomic and Molecular Descriptors, J. Chem. Inf. Comput. Sci. 33, 683-695 (1993)) and is dependent on size, branching, cyclicity, symmetry, heteroatoms and heterobonds.
-
(1993)
J. Chem. Inf. Comput. Sci.
, vol.33
, pp. 683-695
-
-
Rücker, G.1
Rücker, C.2
|