메뉴 건너뛰기




Volumn 2, Issue , 2000, Pages 413-422

Designing optimized pattern recognition systems by learning Voronoi vectors using genetic algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COGNITIVE SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; NUCLEAR POWER PLANTS; OPTIMIZATION; PATTERN RECOGNITION; VECTOR QUANTIZATION; VECTORS;

EID: 0011867635     PISSN: 14706326     EISSN: None     Source Type: Book Series    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (10)
  • 3
    • 0003505613 scopus 로고
    • Learning Vector quantization for pattern racognition
    • TKK-F-A601, Helsinki University of Technology, Finland
    • Kohonen, T., Learning Vector Quantization for Pattern Racognition, Technical Report, TKK-F-A601, Helsinki University of Technology, Finland, 1986.
    • (1986) Technical Report
    • Kohonen, T.1
  • 9
    • 0032278431 scopus 로고    scopus 로고
    • Learning an optimized classification system from a data base of time series using genetic algorithms
    • Brazil
    • Pereira, C. M. N. A., Schirru, R. And Martinez, A. S., Learning an Optimized Classification System from a data Base of Time Series Using Genetic Algorithms, First International Conference on Data Mining, Brazil, pp. 21-34, 1998.
    • (1998) First International Conference on Data Mining , pp. 21-34
    • Pereira, C.M.N.A.1    Schirru, R.2    Martinez, A.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.