-
1
-
-
0000931301
-
On the validity of the formal Edgeworth expansion
-
BHATTACHARYA, R. N. & GHOSH, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann. Statist. 6, 434-51.
-
(1978)
Ann. Statist.
, vol.6
, pp. 434-451
-
-
Bhattacharya, R.N.1
Ghosh, J.K.2
-
2
-
-
0003998889
-
-
London: Chapman and Hall
-
BUCKLAND, S. T., ANDERSON, D. R., BURNHAM, K. P. & LAAKE, J. L. (1993). Distance Sampling. London: Chapman and Hall.
-
(1993)
Distance Sampling
-
-
Buckland, S.T.1
Anderson, D.R.2
Burnham, K.P.3
Laake, J.L.4
-
3
-
-
0000166860
-
On the coverage accuracy of empirical likelihood confidence regions for linear regression model
-
CHEN, S. X. (1993). On the coverage accuracy of empirical likelihood confidence regions for linear regression model. Ann. Inst. Statist. Math. 45, 621-37.
-
(1993)
Ann. Inst. Statist. Math.
, vol.45
, pp. 621-637
-
-
Chen, S.X.1
-
4
-
-
38149147915
-
Empirical likelihood confidence intervals for linear regression coefficients
-
CHEN, S. X. (1994). Empirical likelihood confidence intervals for linear regression coefficients. J. Mult. Anal. 49, 24-40.
-
(1994)
J. Mult. Anal.
, vol.49
, pp. 24-40
-
-
Chen, S.X.1
-
5
-
-
0039566947
-
Kernel estimate for density of biological populations using line transect sampling
-
To appear
-
CHEN, S. X. (1996). Kernel estimate for density of biological populations using line transect sampling. Appl. Statist. 45. To appear.
-
(1996)
Appl. Statist.
, vol.45
-
-
Chen, S.X.1
-
6
-
-
21344487734
-
Smoothed empirical likelihood confidence intervals for quantiles
-
CHEN, S. X. & HALL, P. (1993). Smoothed empirical likelihood confidence intervals for quantiles. Ann. Statist. 21, 1166-81.
-
(1993)
Ann. Statist.
, vol.21
, pp. 1166-1181
-
-
Chen, S.X.1
Hall, P.2
-
7
-
-
0000143319
-
Empirical likelihood is Bartlett correctable
-
DICICCIO, T. J., HALL, P. & ROMANO, J. P. (1991). Empirical likelihood is Bartlett correctable. Ann. Statist. 19, 1053-61.
-
(1991)
Ann. Statist.
, vol.19
, pp. 1053-1061
-
-
DiCiccio, T.J.1
Hall, P.2
Romano, J.P.3
-
8
-
-
84963238289
-
Edgeworth expansions for nonparametric density estimators, with applications
-
HALL, P. (1991). Edgeworth expansions for nonparametric density estimators, with applications. Statistics 22, 215-32.
-
(1991)
Statistics
, vol.22
, pp. 215-232
-
-
Hall, P.1
-
10
-
-
0012768874
-
Empirical likelihood confidence bands in density estimation
-
HALL, P. & OWEN, A. (1993). Empirical likelihood confidence bands in density estimation. J. Computat. Graph. Statist. 2, 273-89.
-
(1993)
J. Computat. Graph. Statist.
, vol.2
, pp. 273-289
-
-
Hall, P.1
Owen, A.2
-
11
-
-
0011298255
-
Cumulants of functions of random variables
-
JAMES, G. S. & MAYNE, A. J. (1962). Cumulants of functions of random variables. Sankhyā A 24, 47-54.
-
(1962)
Sankhyā A
, vol.24
, pp. 47-54
-
-
James, G.S.1
Mayne, A.J.2
-
12
-
-
0000060427
-
Empirical likelihood ratio confidence intervals for a single functional
-
OWEN, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75, 237-49.
-
(1988)
Biometrika
, vol.75
, pp. 237-249
-
-
Owen, A.1
-
13
-
-
0002552463
-
Empirical likelihood ratio confidence regions
-
OWEN, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18, 90-120.
-
(1990)
Ann. Statist.
, vol.18
, pp. 90-120
-
-
Owen, A.1
-
14
-
-
0004161838
-
-
Cambridge: Cambridge University Press
-
PRESS, W. H., FLANNERY, B. F., TEUKOLSKY, S. A. & VETTERLING, W. T. (1992). Numerical Recipes: the Art of Scientific Computing. Cambridge: Cambridge University Press.
-
(1992)
Numerical Recipes: The Art of Scientific Computing
-
-
Press, W.H.1
Flannery, B.F.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
15
-
-
0347609095
-
Empirical likelihood and general estimating functions
-
QIN, J. & LAWLESS, J. (1994). Empirical likelihood and general estimating functions. Ann. Statist. 22, 300-25.
-
(1994)
Ann. Statist.
, vol.22
, pp. 300-325
-
-
Qin, J.1
Lawless, J.2
-
18
-
-
0001096790
-
Transformation of an Edgeworth expansion by a sequence of smooth functions
-
SKOVGAARD, I. B. M. (1981). Transformation of an Edgeworth expansion by a sequence of smooth functions. Scand. J. Statist. 8, 207-17.
-
(1981)
Scand. J. Statist.
, vol.8
, pp. 207-217
-
-
Skovgaard, I.B.M.1
|