-
1
-
-
0028534347
-
Upwind methods for hyperbolic conservation laws with source terms
-
Bermúdez A., Vázquez M. E. Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids. 23:1994;1049.
-
(1994)
Comput. Fluids
, vol.23
, pp. 1049
-
-
Bermúdez, A.1
Vázquez, M.E.2
-
2
-
-
0032030398
-
Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes
-
Bermúdez A., Dervieux A., Desideri J.-A., Vázquez M. E. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng. 155:1998;49.
-
(1998)
Comput. Methods Appl. Mech. Eng.
, vol.155
, pp. 49
-
-
Bermúdez, A.1
Dervieux, A.2
Desideri, J.-A.3
Vázquez, M.E.4
-
7
-
-
0002120724
-
Prediction of supercritical flow in open channels
-
Glaister P. Prediction of supercritical flow in open channels. Comput. Math. Appl. 24:1992;69.
-
(1992)
Comput. Math. Appl.
, vol.24
, pp. 69
-
-
Glaister, P.1
-
9
-
-
85190302334
-
Stability of dynamic flood routing schemes
-
Huang J., Song C. S. Stability of dynamic flood routing schemes. J. Hydraul. Eng. ASCE. 111:1985.
-
(1985)
J. Hydraul. Eng. ASCE
, vol.111
-
-
Huang, J.1
Song, C.S.2
-
12
-
-
0001222654
-
Rankine-Hugoniot-Riemann solver considering source terms and multidimensional effects
-
Jenny P., Muller B. Rankine-Hugoniot-Riemann solver considering source terms and multidimensional effects. J. Comput. Phys. 145:1998;575.
-
(1998)
J. Comput. Phys.
, vol.145
, pp. 575
-
-
Jenny, P.1
Muller, B.2
-
14
-
-
0001315315
-
Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm
-
LeVeque R. J. Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys. 146:1998;346.
-
(1998)
J. Comput. Phys.
, vol.146
, pp. 346
-
-
LeVeque, R.J.1
-
16
-
-
2942757053
-
Approximate Riemann solvers, parameter vectors, and difference schemes
-
Roe P. L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43:1981;357.
-
(1981)
J. Comput. Phys.
, vol.43
, pp. 357
-
-
Roe, P.L.1
-
17
-
-
0001900301
-
Fluctuations and signals - A framework for numerical evolution problems
-
edited by K. W. MortonOxford Univ. Press, London
-
P. L. Roe, Fluctuations and signals - A framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, edited by K. W. MortonOxford Univ. Press, London, 1982, 219-257.
-
(1982)
In Numerical Methods for Fluid Dynamics
, pp. 219-257
-
-
Roe, P.L.1
-
18
-
-
0022477699
-
Characteristic-based schemes for the Euler equations
-
Roe P. L. Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18:1986;337.
-
(1986)
Ann. Rev. Fluid Mech.
, vol.18
, pp. 337
-
-
Roe, P.L.1
-
19
-
-
0001567858
-
MPDATA: A finite-difference solver for geophysical flows
-
Smolarkiewicz P. K., Margolin L. G. MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys. 140:1998;459.
-
(1998)
J. Comput. Phys.
, vol.140
, pp. 459
-
-
Smolarkiewicz, P.K.1
Margolin, L.G.2
-
20
-
-
0021513424
-
High resolution schemes using flux limiters for hyperbolic conservation laws
-
Sweby P. K. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21:1984;995.
-
(1984)
SIAM J. Numer. Anal.
, vol.21
, pp. 995
-
-
Sweby, P.K.1
-
21
-
-
0348194970
-
Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry
-
Vázquez-Cendón M. E. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148:1999;497.
-
(1999)
J. Comput. Phys.
, vol.148
, pp. 497
-
-
Vázquez-Cendón, M.E.1
-
22
-
-
2442433925
-
Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method
-
van Leer B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method. J. Comput. Phys. 32:1979;101.
-
(1979)
J. Comput. Phys.
, vol.32
, pp. 101
-
-
Van Leer, B.1
|