메뉴 건너뛰기




Volumn 127, Issue 2, 1995, Pages 438-455

Hilbert’s Projective Metric on Cones of Dirichlet Forms

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0010780407     PISSN: 00221236     EISSN: 10960783     Source Type: Journal    
DOI: 10.1006/jfan.1995.1019     Document Type: Article
Times cited : (37)

References (27)
  • 3
    • 0038962257 scopus 로고
    • “Seminaire BOURBAKI 44eme annee, 1991-92
    • M. T. Barlow, Harmonic analysis on fractal spaces, in “Seminaire BOURBAKI 44eme annee, 1991-92,” pp. 345-368, 1992.
    • (1992) Harmonic Analysis on Fractal Spaces , pp. 345-368
    • Barlow, M.T.1
  • 4
    • 0001428463 scopus 로고
    • Random walks, electrical resistance, and nested fractals, K. D. Elworthy and N. Ikeda, Eds.), Pitman Res. Notes Math. Ser., Longman, Harlow
    • M. T. Barlow, Random walks, electrical resistance, and nested fractals, in “Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals” (K. D. Elworthy and N. Ikeda, Eds.), pp. 131-157, Pitman Res. Notes Math. Ser., Longman, Harlow, 1993.
    • (1993) Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals , pp. 131-157
    • Barlow, M.T.1
  • 6
    • 0015744267 scopus 로고
    • Hilbert’s metric and positive contraction mappings in a Banach space
    • P. J. Bushell, Hilbert’s metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal. 52 (1973), 330-338.
    • (1973) Arch. Rational Mech. Anal , vol.52 , pp. 330-338
    • Bushell, P.J.1
  • 7
    • 0004175163 scopus 로고
    • Pure Appl. Math., New York, Wiley
    • P. J. Davis, “Circulant Matrices,” Pure Appl. Math., New York, Wiley, 1979.
    • (1979) Circulant Matrices
    • Davis, P.J.1
  • 8
    • 85027664306 scopus 로고    scopus 로고
    • Transition density estimates for Brownian motion on affine nested fractals
    • to appear
    • P. J. Fitzsimmons, B. M. Hambly, and T. Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys., to appear.
    • Comm. Math. Phys
    • Fitzsimmons, P.J.1    Hambly, B.M.2    Kumagai, T.3
  • 10
    • 0001698331 scopus 로고
    • Gaussian field theories on general networks and the spectral dimension
    • K. Hattori, T. Hattori, and H. Watanabe, Gaussian field theories on general networks and the spectral dimension, Progr. Theoret. Phys. Suppl. 92 (1987), 108-143.
    • (1987) Progr. Theoret. Phys , vol.92 , pp. 108-143
    • Hattori, K.1    Hattori, T.2    Watanabe, H.3
  • 11
    • 0001265433 scopus 로고
    • Fractals and self-similarity
    • J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
    • (1981) Indiana Univ. Math. J , vol.30 , pp. 713-747
    • Hutchinson, J.E.1
  • 12
    • 0041307732 scopus 로고
    • Fixed Point Theory. An Introduction
    • Reidel, Dordrecht
    • V. I. Istrăjescu, “Fixed Point Theory. An Introduction,” Math. Appl., Vol. 7, Reidel, Dordrecht, 1981.
    • (1981) Math. Appl , vol.7
    • Istrăjescu, V.I.1
  • 13
    • 84924341601 scopus 로고
    • Harmonic calculus on p.C.F. Self-similar sets
    • J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335, No. 2 (1993), 721-755.
    • (1993) Trans. Amer. Math. Soc , vol.335 , Issue.2 , pp. 721-755
    • Kigami, J.1
  • 14
    • 38249003751 scopus 로고
    • A limit set trichotomy for self-mappings of normal cones in Banach spaces
    • U. Krause and R. D. Nussbaum, A limit set trichotomy for self-mappings of normal cones in Banach spaces, Nonlinear Anal., Theory Methods Appl. 20, No. 7 (1993), 855-870.
    • (1993) Nonlinear Anal., Theory Methods Appl , vol.20 , Issue.7 , pp. 855-870
    • Krause, U.1    Nussbaum, R.D.2
  • 15
    • 0039338261 scopus 로고
    • A diffusion defined on a fractal state space
    • W. B. Krebs, A diffusion defined on a fractal state space, Stochastic Process. Appl. 37, No. 2 (1991), 199-212.
    • (1991) Stochastic Process. Appl , vol.37 , Issue.2 , pp. 199-212
    • Krebs, W.B.1
  • 16
    • 0013671278 scopus 로고
    • Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket
    • K. D. Elworthy and N. lkeda, Eds, Pitman Res. Notes Math. Ser., Longman, Harlow
    • T. Kumagai, Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket, in “Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals” (K. D. Elworthy and N. lkeda, Eds.), pp. 219-247, Pitman Res. Notes Math. Ser., Longman, Harlow, 1993.
    • (1993) Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals , pp. 219-247
    • Kumagai, T.1
  • 17
    • 0012522288 scopus 로고
    • Diffusion processes on nested fractals
    • R. L. Dobrushin and S. Kusuoka, Eds, Lecture Notes in Math, Springer, Berlin/Heidelberg
    • S. Kusuoka, Diffusion processes on nested fractals, in “Statistical Mechanics and Fractals” (R. L. Dobrushin and S. Kusuoka, Eds.), pp. 39-98, Lecture Notes in Math., Vol. 1567, Springer, Berlin/Heidelberg, 1993.
    • (1993) Statistical Mechanics and Fractals , vol.1567 , pp. 39-98
    • Kusuoka, S.1
  • 18
    • 0000311503 scopus 로고
    • Brownian Motion on Nested Fractals
    • Amer. Math. Soc., Providence
    • T. Lindstriøm, "Brownian Motion on Nested Fractals,” Mem. Amer. Math. Soc., Vol. 83, No. 420, Amer. Math. Soc., Providence, 1990.
    • (1990) Mem. Amer. Math. Soc , vol.83 , Issue.420
    • Lindstriøm, T.1
  • 19
    • 0000921622 scopus 로고
    • How many diffusions exist on the Vicsek snowflake?
    • V. Metz, How many diffusions exist on the Vicsek snowflake?, Acta Appl Math. 32 (1993), 227-241.
    • (1993) Acta Appl Math , vol.32 , pp. 227-241
    • Metz, V.1
  • 20
    • 85027647855 scopus 로고    scopus 로고
    • Renormalization of finitely ramified fractals
    • to appear
    • V. Metz, Renormalization of finitely ramified fractals, Proc. Roy. Soc. Edinburgh Sect. A, to appear.
    • Proc. Roy. Soc. Edinburgh Sect. A
    • Metz, V.1
  • 22
    • 84968399142 scopus 로고
    • Hilbert’s Projective Metric and Iterated Nonlinear Maps
    • Amer. Math. Soc., Providence
    • R. D. Nussbaum, “Hilbert’s Projective Metric and Iterated Nonlinear Maps,” Mem. Amer. Math. Soc., Vol. 75, No. 391, Amer. Math. Soc., Providence, 1988.
    • (1988) Mem. Amer. Math. Soc , vol.75 , Issue.391
    • Nussbaum, R.D.1
  • 26
    • 0001252469 scopus 로고
    • Sur une courbe dont tout point est un point de ramification
    • W. Sierpinski, Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci. Paris 160 (1915), 302-305.
    • (1915) C. R. Acad. Sci. Paris , vol.160 , pp. 302-305
    • Sierpinski, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.