-
1
-
-
0016439618
-
-
W. N. Anderson Jr. and G. E. Trapp, Shorted operators, II, SIAM J. Appl. Math. 28, No. 1 (1975), 60-71.
-
(1975)
Shorted Operators, II, SIAM J. Appl. Math
, vol.28
, Issue.1
, pp. 60-71
-
-
Anderson, W.N.1
Trapp, G.E.2
-
2
-
-
85027660414
-
-
“Mathematical Models” (C. V. Coffman and G. J. Fix, Eds.), Academic Press, New York
-
W. N. Anderson Jr. and G. E. Trapp, Matrix operations induced by electrical network connections—A survey, in “Mathematical Models” (C. V. Coffman and G. J. Fix, Eds.), pp. 53-73, Academic Press, New York, 1979.
-
(1979)
Matrix Operations Induced by Electrical Network connections—A Survey
, pp. 53-73
-
-
Anderson, W.N.1
Trapp, G.E.2
-
4
-
-
0001428463
-
-
Random walks, electrical resistance, and nested fractals, K. D. Elworthy and N. Ikeda, Eds.), Pitman Res. Notes Math. Ser., Longman, Harlow
-
M. T. Barlow, Random walks, electrical resistance, and nested fractals, in “Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals” (K. D. Elworthy and N. Ikeda, Eds.), pp. 131-157, Pitman Res. Notes Math. Ser., Longman, Harlow, 1993.
-
(1993)
Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals
, pp. 131-157
-
-
Barlow, M.T.1
-
6
-
-
0015744267
-
Hilbert’s metric and positive contraction mappings in a Banach space
-
P. J. Bushell, Hilbert’s metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal. 52 (1973), 330-338.
-
(1973)
Arch. Rational Mech. Anal
, vol.52
, pp. 330-338
-
-
Bushell, P.J.1
-
7
-
-
0004175163
-
-
Pure Appl. Math., New York, Wiley
-
P. J. Davis, “Circulant Matrices,” Pure Appl. Math., New York, Wiley, 1979.
-
(1979)
Circulant Matrices
-
-
Davis, P.J.1
-
8
-
-
85027664306
-
Transition density estimates for Brownian motion on affine nested fractals
-
to appear
-
P. J. Fitzsimmons, B. M. Hambly, and T. Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys., to appear.
-
Comm. Math. Phys
-
-
Fitzsimmons, P.J.1
Hambly, B.M.2
Kumagai, T.3
-
10
-
-
0001698331
-
Gaussian field theories on general networks and the spectral dimension
-
K. Hattori, T. Hattori, and H. Watanabe, Gaussian field theories on general networks and the spectral dimension, Progr. Theoret. Phys. Suppl. 92 (1987), 108-143.
-
(1987)
Progr. Theoret. Phys
, vol.92
, pp. 108-143
-
-
Hattori, K.1
Hattori, T.2
Watanabe, H.3
-
11
-
-
0001265433
-
Fractals and self-similarity
-
J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
-
(1981)
Indiana Univ. Math. J
, vol.30
, pp. 713-747
-
-
Hutchinson, J.E.1
-
12
-
-
0041307732
-
Fixed Point Theory. An Introduction
-
Reidel, Dordrecht
-
V. I. Istrăjescu, “Fixed Point Theory. An Introduction,” Math. Appl., Vol. 7, Reidel, Dordrecht, 1981.
-
(1981)
Math. Appl
, vol.7
-
-
Istrăjescu, V.I.1
-
13
-
-
84924341601
-
Harmonic calculus on p.C.F. Self-similar sets
-
J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335, No. 2 (1993), 721-755.
-
(1993)
Trans. Amer. Math. Soc
, vol.335
, Issue.2
, pp. 721-755
-
-
Kigami, J.1
-
14
-
-
38249003751
-
A limit set trichotomy for self-mappings of normal cones in Banach spaces
-
U. Krause and R. D. Nussbaum, A limit set trichotomy for self-mappings of normal cones in Banach spaces, Nonlinear Anal., Theory Methods Appl. 20, No. 7 (1993), 855-870.
-
(1993)
Nonlinear Anal., Theory Methods Appl
, vol.20
, Issue.7
, pp. 855-870
-
-
Krause, U.1
Nussbaum, R.D.2
-
15
-
-
0039338261
-
A diffusion defined on a fractal state space
-
W. B. Krebs, A diffusion defined on a fractal state space, Stochastic Process. Appl. 37, No. 2 (1991), 199-212.
-
(1991)
Stochastic Process. Appl
, vol.37
, Issue.2
, pp. 199-212
-
-
Krebs, W.B.1
-
16
-
-
0013671278
-
Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket
-
K. D. Elworthy and N. lkeda, Eds, Pitman Res. Notes Math. Ser., Longman, Harlow
-
T. Kumagai, Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket, in “Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals” (K. D. Elworthy and N. lkeda, Eds.), pp. 219-247, Pitman Res. Notes Math. Ser., Longman, Harlow, 1993.
-
(1993)
Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals
, pp. 219-247
-
-
Kumagai, T.1
-
17
-
-
0012522288
-
Diffusion processes on nested fractals
-
R. L. Dobrushin and S. Kusuoka, Eds, Lecture Notes in Math, Springer, Berlin/Heidelberg
-
S. Kusuoka, Diffusion processes on nested fractals, in “Statistical Mechanics and Fractals” (R. L. Dobrushin and S. Kusuoka, Eds.), pp. 39-98, Lecture Notes in Math., Vol. 1567, Springer, Berlin/Heidelberg, 1993.
-
(1993)
Statistical Mechanics and Fractals
, vol.1567
, pp. 39-98
-
-
Kusuoka, S.1
-
18
-
-
0000311503
-
Brownian Motion on Nested Fractals
-
Amer. Math. Soc., Providence
-
T. Lindstriøm, "Brownian Motion on Nested Fractals,” Mem. Amer. Math. Soc., Vol. 83, No. 420, Amer. Math. Soc., Providence, 1990.
-
(1990)
Mem. Amer. Math. Soc
, vol.83
, Issue.420
-
-
Lindstriøm, T.1
-
19
-
-
0000921622
-
How many diffusions exist on the Vicsek snowflake?
-
V. Metz, How many diffusions exist on the Vicsek snowflake?, Acta Appl Math. 32 (1993), 227-241.
-
(1993)
Acta Appl Math
, vol.32
, pp. 227-241
-
-
Metz, V.1
-
20
-
-
85027647855
-
Renormalization of finitely ramified fractals
-
to appear
-
V. Metz, Renormalization of finitely ramified fractals, Proc. Roy. Soc. Edinburgh Sect. A, to appear.
-
Proc. Roy. Soc. Edinburgh Sect. A
-
-
Metz, V.1
-
22
-
-
84968399142
-
Hilbert’s Projective Metric and Iterated Nonlinear Maps
-
Amer. Math. Soc., Providence
-
R. D. Nussbaum, “Hilbert’s Projective Metric and Iterated Nonlinear Maps,” Mem. Amer. Math. Soc., Vol. 75, No. 391, Amer. Math. Soc., Providence, 1988.
-
(1988)
Mem. Amer. Math. Soc
, vol.75
, Issue.391
-
-
Nussbaum, R.D.1
-
26
-
-
0001252469
-
Sur une courbe dont tout point est un point de ramification
-
W. Sierpinski, Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci. Paris 160 (1915), 302-305.
-
(1915)
C. R. Acad. Sci. Paris
, vol.160
, pp. 302-305
-
-
Sierpinski, W.1
-
27
-
-
0003476784
-
-
Dissertation, Fachbereich Mathematik der Universitiit Bremen, Bremen
-
D. Weller, “Hilbert’s Metric, Part Metric and Selfmappings of a Cone," Dissertation, Fachbereich Mathematik der Universitiit Bremen, Bremen, 1987.
-
(1987)
Hilbert’s Metric, Part Metric and Selfmappings of a Cone
-
-
Weller, D.1
|