-
1
-
-
0023572885
-
-
pp. 462-471.
-
ADLEMAN, L. M., AND HUANG, M. 1987. Recognizing primes in polynomial time. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (New York, N.Y., May 25-27). ACM, New York, pp. 462-471.
-
M., and HUANG, M. 1987. Recognizing Primes in Polynomial Time. in Proceedings of the 19th Annual ACM Symposium on Theory of Computing (New York, N.Y., May 25-27). ACM, New York
-
-
Adleman, L.1
-
3
-
-
84966257177
-
-
pp. 175-178.
-
ADLEMAN, L. M., MANDERS, K., AND MILLER, G. L. 1977. On taking roots in finite fields. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science. IEEE, New York, pp. 175-178.
-
M., MANDERS, K., and MILLER, G. L. 1977. on Taking Roots in Finite Fields. in Proceedings of the 18th Annual Symposium on Foundations of Computer Science. IEEE, New York
-
-
Adleman, L.1
-
4
-
-
33745528770
-
-
117, 173-206.
-
ADLEMAN, L. M., POMERANCE, C., AND RUMELY, R. 1983. On distinguishing prime numbers from composite numbers. Ann. Math. 117, 173-206.
-
M., POMERANCE, C., and RUMELY, R. 1983. on Distinguishing Prime Numbers from Composite Numbers. Ann. Math.
-
-
Adleman, L.1
-
6
-
-
33745538899
-
-
1986b. Manuscript.
-
ATKIN, A. O. L. 1986b. Manuscript.
-
O. L.
-
-
Atkin, A.1
-
9
-
-
84966219173
-
-
(July), 29-68.
-
ATKIN, A. O. L., AND MORAIN, F. 1993. Elliptic curves and primality proving. Math. Comput. 61, 203 (July), 29-68.
-
O. L., and MORAIN, F. 1993. Elliptic Curves and Primality Proving. Math. Comput. 61, 203
-
-
Atkin, A.1
-
11
-
-
84966237850
-
-
pp. 652-656.
-
BOSMA, W., AND VAN DER HULST, M. P. 1990. Faster primality testing. In Proceedings of EUROC-RYPT '89. Lecture Notes in Computer Science, vol. 434. Springer-Verlag, New York, pp. 652-656.
-
AND VAN der HULST, M. P. 1990. Faster Primality Testing. in Proceedings of EUROC-RYPT '89. Lecture Notes in Computer Science, Vol. 434. Springer-Verlag, New York
-
-
Bosma, W.1
-
13
-
-
33745572933
-
-
2, 22.
-
n + 1; b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Cont. Math. 2, 22.
-
n + 1; B = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers. Cont. Math.
-
-
Brillhart, J.1
-
17
-
-
33745560366
-
-
pp. 21-76.
-
ELKIES, N. D. 1998. Elliptic and modular curves over finite fields and related computational issues. In Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of A. O. L. Atkins, D. A. Buell and J. T. Teitelbaum, eds. AMS/IP Studies in Advanced Mathematics, vol. 7. American Mathematics Society, Providence, R. I., pp. 21-76.
-
D. 1998. Elliptic and Modular Curves over Finite Fields and Related Computational Issues. in Computational Perspectives on Number Theory: Proceedings of A Conference in Honor of A. O. L. Atkins, D. A. Buell and J. T. Teitelbaum, Eds. AMS/IP Studies in Advanced Mathematics, Vol. 7. American Mathematics Society, Providence, R. I.
-
-
Elkies, N.1
-
18
-
-
33745565259
-
-
pp. 316-329.
-
GOLDWASSER, S., AND KILIAN, J. 1986. Almost all primes can be quickly certified. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (Berkeley, Calif., May 28-30). ACM, New York, pp. 316-329.
-
AND KILIAN, J. 1986. Almost All Primes Can Be Quickly Certified. in Proceedings of the 18th Annual ACM Symposium on Theory of Computing (Berkeley, Calif., May 28-30). ACM, New York
-
-
Goldwasser, S.1
-
20
-
-
85033462474
-
-
pp. 26-33.
-
KALTOFEN, E., VALENTE, T., AND YUI, N. 1989. An improved Las Vegas primality test. In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Compulation (ISSAC '89) (Portland, Ore., July 17-19), Gilt Gonnet, ed. ACM, New York, pp. 26-33.
-
VALENTE, T., and YUI, N. 1989. An Improved Las Vegas Primality Test. in Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Compulation (ISSAC '89) (Portland, Ore., July 17-19), Gilt Gonnet, Ed. ACM, New York
-
-
Kaltofen, E.1
-
22
-
-
33745569932
-
-
pp. 177-198.
-
KONYAGIN, S., AND POMERANCE, C. 1997. On primes recognizable in deterministic polynomial time. In The Mathematics of Paul Erdös, R. Graham and J. Nešetřil, eds. Springer-Verlag, New York, pp. 177-198.
-
AND POMERANCE, C. 1997. on Primes Recognizable in Deterministic Polynomial Time. in the Mathematics of Paul Erdös, R. Graham and J. Nešetřil, Eds. Springer-Verlag, New York
-
-
Konyagin, S.1
-
24
-
-
33745533446
-
-
Chicago, 111.
-
LENSTRA, A., AND LENSTRA, JR., H. W. 1987. Algorithms in number theory. Tech. Rep. 87-008. Univ. Chicago, Chicago, 111.
-
AND LENSTRA, JR., H. W. 1987. Algorithms in Number Theory. Tech. Rep. 87-008. Univ. Chicago
-
-
Lenstra, A.1
-
25
-
-
33745537864
-
-
345, 397-408.
-
LENSTRA, JR., H. W., PILA, J., AND POMERANCE, C. 1993. A hyperelliptic smoothness test, I. Philos. Trans. Roy Soc. London Ser. A 345, 397-408.
-
H. W., PILA, J., and POMERANCE, C. 1993. A Hyperelliptic Smoothness Test, I. Philos. Trans. Roy Soc. London Ser. A
-
-
Lenstra, J.R.1
-
26
-
-
33745572600
-
-
II. Manuscript.
-
LENSTRA, JR., H. W., PILA, J., AND POMERANCE, C. 1999. A hyperelliptic smoothness test, II. Manuscript.
-
H. W., PILA, J., and POMERANCE, C. 1999. A Hyperelliptic Smoothness Test
-
-
Lenstra, J.R.1
-
27
-
-
33745572600
-
-
To appear.
-
LENSTRA, JR., H. W., PILA, J., AND POMERANCE, C. 1999. A hyperelliptic smoothness test, III. To appear.
-
H. W., PILA, J., and POMERANCE, C. 1999. A Hyperelliptic Smoothness Test, III.
-
-
Lenstra, J.R.1
-
32
-
-
84968512792
-
-
187, 399-406.
-
PINTZ, J., STEIGER, W., AND SZEMEREDI, E. 1989. Infinite sets of primes with fast primality tests and quick generation of large primes. Math. Comput. 53, 187, 399-406.
-
STEIGER, W., and SZEMEREDI, E. 1989. Infinite Sets of Primes with Fast Primality Tests and Quick Generation of Large Primes. Math. Comput. 53
-
-
Pintz, J.1
|