메뉴 건너뛰기




Volumn 2, Issue 2, 1996, Pages 237-254

Existence and non-existence of homoclinic trajectories of the Liénard system

Author keywords

Homoclinic trajectories; Li nard system; Periodic solutions

Indexed keywords


EID: 0010534882     PISSN: 10780947     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcds.1996.2.237     Document Type: Article
Times cited : (18)

References (7)
  • 1
    • 0010534285 scopus 로고
    • Sufficient conditions for the existence of stable limit cycles of second order equations
    • A.F. Filippov, Sufficient conditions for the existence of stable limit cycles of second order equations, Mat. Sbornik 30 (1952), 171-180.
    • (1952) Mat. Sbornik , vol.30 , pp. 171-180
    • Filippov, A.F.1
  • 2
    • 38149147676 scopus 로고
    • Notice on the Vinograd type theorems for Liénard system
    • T. Hara, Notice on the Vinograd type theorems for Liénard system, Nonlinear Anal. 22 (1994), 1437-1444.
    • (1994) Nonlinear Anal. , vol.22 , pp. 1437-1444
    • Hara, T.1
  • 3
    • 0010567312 scopus 로고
    • When all trajectories in the Liénard plane cross the vertical isocline?
    • T. Hara and J. Sugie, When all trajectories in the Liénard plane cross the vertical isocline?, Nonlinear Diff. Eq. Appl. 2 (1995), 527-551.
    • (1995) Nonlinear Diff. Eq. Appl. , vol.2 , pp. 527-551
    • Hara, T.1    Sugie, J.2
  • 4
    • 0001230816 scopus 로고
    • On the global center of generalized Liénard equation and its application to stability problems
    • T. Hara and T. Yoneyama, On the global center of generalized Liénard equation and its application to stability problems, Funkcial. Ekvac. 28 (1985), 171-192.
    • (1985) Funkcial. Ekvac. , vol.28 , pp. 171-192
    • Hara, T.1    Yoneyama, T.2
  • 6
    • 0010535855 scopus 로고
    • The global centre for the Liénard system
    • J. Sugie, The global centre for the Liénard system, Nonlinear Anal. 17 (1991), 333-345.
    • (1991) Nonlinear Anal. , vol.17 , pp. 333-345
    • Sugie, J.1
  • 7
    • 84974028780 scopus 로고
    • On the Liénard system which has no periodic solutions
    • J. Sugie and T. Yoneyama, On the Liénard system which has no periodic solutions, Math. Proc. Camb. Phil. Soc. 113 (1993), 413-422.
    • (1993) Math. Proc. Camb. Phil. Soc. , vol.113 , pp. 413-422
    • Sugie, J.1    Yoneyama, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.