-
2
-
-
85034310446
-
-
For an extensive reference list, see Ref. 1
-
For an extensive reference list, see Ref. 1.
-
-
-
-
3
-
-
85034283361
-
-
note
-
Since the ground-state polarizability is mainly governed by the transition dipole moments to the excited states, the dipole-unallowed states will not have a direct influence on the polarizability.
-
-
-
-
4
-
-
33746614482
-
-
T. H. Dunning. Jr., J. Chem. Phys. 90, 1007 (1989); R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6769 (1992).
-
(1989)
J. Chem. Phys.
, vol.90
, pp. 1007
-
-
Dunning Jr., T.H.1
-
5
-
-
4143095330
-
-
T. H. Dunning. Jr., J. Chem. Phys. 90, 1007 (1989); R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6769 (1992).
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 6769
-
-
Kendall, R.A.1
Dunning Jr., T.H.2
Harrison, R.J.3
-
6
-
-
0004067957
-
-
edited by H. F. Schaefer, III Plenum, N.Y.
-
T. H. Dunning and P. J. Hay, in Methods of Electronic Structure Theory, edited by H. F. Schaefer, III (Plenum, N.Y. 1977), Vol. 3.
-
(1977)
Methods of Electronic Structure Theory
, vol.3
-
-
Dunning, T.H.1
Hay, P.J.2
-
7
-
-
85034284322
-
-
note
-
Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, and funded by the U.S. Department of Energy.
-
-
-
-
8
-
-
84893169025
-
-
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
-
(1993)
J. Comput. Chem.
, vol.14
, pp. 1347
-
-
Schmidt, M.W.1
Baldridge, K.K.2
Boatz, J.A.3
Elbert, S.T.4
Gordon, M.S.5
Jensen, J.H.6
Koseki, S.7
Matsunaga, N.8
Nguyen, K.A.9
Su, S.J.10
Windus, T.L.11
Dupuis, M.12
Montgomery, J.A.13
-
9
-
-
85034299920
-
-
note
-
1 state. As for the transition moment calculations, the core orbital for each excited state was first replaced by that optimized for the ground-state and was then kept unchanged during the CASSCF optimizations, as required by the GAMESS code.
-
-
-
-
11
-
-
85034275463
-
-
note
-
The assignment of partial charges to the five sites to describe the dipole matrices in Table III is not unique. Since their tabulation requires a bulky space, the partial charges employed in the simulation studies are not given here. However, detailed information on them will he available upon request.
-
-
-
-
12
-
-
85034305508
-
-
note
-
The L.J spheres associated with the hydrogen atoms are completely embedded in the oxygen sphere.
-
-
-
-
16
-
-
0042128613
-
-
For the importance of the octopole moments, see, e.g., L. Degrève and L. Blum. Physica A 224, 550 (1996).
-
(1996)
Physica A
, vol.224
, pp. 550
-
-
Degrève, L.1
Blum, L.2
-
24
-
-
33751151322
-
-
(b) ibid. 100, 1392 (1996);
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 1392
-
-
-
26
-
-
85034292136
-
-
note
-
-1 was observed during a 20 ps test run, even though three to five iterations were sufficient to attain the convergence.
-
-
-
-
27
-
-
0004016501
-
-
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 926
-
-
Jorgensen, W.L.1
Chandrasekhar, J.2
Madura, J.D.3
Impey, R.W.4
Klein, M.L.5
-
28
-
-
85034283693
-
-
note
-
OO peak is somewhat more distinctive for the former than the corresponding peaks for the latter.
-
-
-
-
30
-
-
85034303976
-
-
note
-
(a) A different water geometry, for example, TIP4P, could enhance the tetrahedral peak, compared to that with SPC geometry employed for our TAB models,
-
-
-
-
31
-
-
85034307680
-
-
note
-
(b) A similar trend of the tetrahedral peak with polarizability was also found for a fluctuating charge model with SPC geometry (Ref. 31).
-
-
-
-
38
-
-
33751158545
-
-
D. N. Bernardo, Y. Ding, K. Krogh-Jespersen, and R. M. Levy, J. Phys. Chem. 98, 4180 (1994).
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 4180
-
-
Bernardo, D.N.1
Ding, Y.2
Krogh-Jespersen, K.3
Levy, R.M.4
-
39
-
-
36949017804
-
-
P. Ahlström, A. Wallqvist, S. Engström, and B. Jönsson, Mol. Phys. 68, 563 (1989).
-
(1989)
Mol. Phys.
, vol.68
, pp. 563
-
-
Ahlström, P.1
Wallqvist, A.2
Engström, S.3
Jönsson, B.4
-
40
-
-
85034294425
-
-
note
-
1 and compared with the results of approximate Eq. (4.4) for several different MD configurations. We found that even though the former is usually larger than the latter, their numerical difference is nearly insignificant; in all cases we have considered, their relative difference does not exceed a few percent.
-
-
-
-
41
-
-
85034287417
-
-
note
-
s & and compared them with those in Fig. 3(a). A good overall agreement between the two confirms our conclusion.
-
-
-
-
42
-
-
0003608171
-
-
edited by D. Steele and J. Yarwood Elsevier, Amsterdam, see also B. M. Ladanyi there
-
For a recent review, see, e.g., P. A. Madden, in Spectroscopy and Relaxation of Molecular Liquids, edited by D. Steele and J. Yarwood (Elsevier, Amsterdam, 1991); see also B. M. Ladanyi there.
-
(1991)
Spectroscopy and Relaxation of Molecular Liquids
-
-
Madden, P.A.1
-
45
-
-
85034287957
-
-
note
-
s/3V. See Ref. 39.
-
-
-
-
47
-
-
85034282336
-
-
note
-
This state of affairs could be considerably improved, in principle, by increasing the TAB size, even though it would entail significant CPU overhead.
-
-
-
-
49
-
-
0000367853
-
-
Ser. A
-
S. W. De Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London, Ser. A 388, 177 (1983).
-
(1983)
Proc. R. Soc. London
, vol.388
, pp. 177
-
-
De Leeuw, S.W.1
Perram, J.W.2
Smith, E.R.3
-
51
-
-
85034309292
-
-
note
-
(a) The electronic relaxation effects could be partially accounted for via the IMCI method (see Sec. II D of I),
-
-
-
-
52
-
-
85034291227
-
-
note
-
(b) The inclusion of electronic relaxation would increase the bandwidth.
-
-
-
-
53
-
-
0005471278
-
-
R. Onaka and T. Takahashi, J. Phys. Soc. Jpn. 24, 548 (1968); T. Shibaguchi, H. Onuki, and R. Onaka, ibid. 42, 152 (1977).
-
(1968)
J. Phys. Soc. Jpn.
, vol.24
, pp. 548
-
-
Onaka, R.1
Takahashi, T.2
-
54
-
-
0000116476
-
-
R. Onaka and T. Takahashi, J. Phys. Soc. Jpn. 24, 548 (1968); T. Shibaguchi, H. Onuki, and R. Onaka, ibid. 42, 152 (1977).
-
(1977)
J. Phys. Soc. Jpn.
, vol.42
, pp. 152
-
-
Shibaguchi, T.1
Onuki, H.2
Onaka, R.3
-
55
-
-
0000915703
-
-
R. E. Verrall and W. A. Senior, J. Chem. Phys. 50, 2746 (1969); L. R. Painter, R. D. Birkhoff, and E. T. Arakawa, ibid. 51, 243 (1969); S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spectrosc. 32, 288 (1972).
-
(1969)
J. Chem. Phys.
, vol.50
, pp. 2746
-
-
Verrall, R.E.1
Senior, W.A.2
-
56
-
-
36849104179
-
-
R. E. Verrall and W. A. Senior, J. Chem. Phys. 50, 2746 (1969); L. R. Painter, R. D. Birkhoff, and E. T. Arakawa, ibid. 51, 243 (1969); S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spectrosc. 32, 288 (1972).
-
(1969)
J. Chem. Phys.
, vol.51
, pp. 243
-
-
Painter, L.R.1
Birkhoff, R.D.2
Arakawa, E.T.3
-
57
-
-
0000915703
-
-
R. E. Verrall and W. A. Senior, J. Chem. Phys. 50, 2746 (1969); L. R. Painter, R. D. Birkhoff, and E. T. Arakawa, ibid. 51, 243 (1969); S. I. Popova, L. I. Alperovich, and V. M. Zolotarev, Opt. Spectrosc. 32, 288 (1972).
-
(1972)
Opt. Spectrosc.
, vol.32
, pp. 288
-
-
Popova, S.I.1
Alperovich, L.I.2
Zolotarev, V.M.3
-
63
-
-
85034289422
-
-
note
-
The values in parentheses are determined with the Clausius-Mossotti equation (see Ref. 40).
-
-
-
-
64
-
-
33645924293
-
-
For references on experimental studies, see, e.g., G. Durand and X. Chapuisat, Chem. Phys. 96, 381 (1985).
-
(1985)
Chem. Phys.
, vol.96
, pp. 381
-
-
Durand, G.1
Chapuisat, X.2
-
65
-
-
36849096816
-
-
S. A. Clough, A. Beers, G. P. Klein, and L. S. Rothman, J. Chem. Phys. 59, 2254 (1973).
-
(1973)
J. Chem. Phys.
, vol.59
, pp. 2254
-
-
Clough, S.A.1
Beers, A.2
Klein, G.P.3
Rothman, L.S.4
|