-
1
-
-
0002941971
-
A new approach to the Morse-Conley Theory and some applications
-
V. BENCI, A new approach to the Morse-Conley Theory and some applications, Ann. Mat. Pura Appl. 158 (1991), 231-305.
-
(1991)
Ann. Mat. Pura Appl.
, vol.158
, pp. 231-305
-
-
Benci, V.1
-
2
-
-
0000778954
-
Periodic solutions of asymptotically linear dynamical systems
-
V. BENCI and D. FORTUNATO, Periodic solutions of asymptotically linear dynamical systems, Nonlinear Diff. Eq. and Appl. 1 (1994), 267-280.
-
(1994)
Nonlinear Diff. Eq. and Appl.
, vol.1
, pp. 267-280
-
-
Benci, V.1
Fortunato, D.2
-
3
-
-
84968473058
-
Proof of Poincaré's geometric theorem
-
G.D. BIRKHOFF, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc, 14 (1913), 14-22.
-
(1913)
Trans. Amer. Math. Soc
, vol.14
, pp. 14-22
-
-
Birkhoff, G.D.1
-
4
-
-
51249195279
-
An extension of Poincaré's last geometric theorem
-
G.D. BIRKHOFF, An extension of Poincaré's last geometric theorem, Acta Math. 47 (1925), 297-311.
-
(1925)
Acta Math.
, vol.47
, pp. 297-311
-
-
Birkhoff, G.D.1
-
5
-
-
0002734536
-
Proof of the Poincaré-Birkhoff fixed point theorem
-
M. BROWN and W.D. NEUMANN, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), 21-31.
-
(1977)
Michigan Math. J.
, vol.24
, pp. 21-31
-
-
Brown, M.1
Neumann, W.D.2
-
6
-
-
84990569659
-
Morse-type index theory for flows and periodic solutions for Hamiltonian equations
-
C. CONLEY and E. ZEHNDER, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207-253.
-
(1984)
Comm. Pure Appl. Math.
, vol.37
, pp. 207-253
-
-
Conley, C.1
Zehnder, E.2
-
8
-
-
33751514484
-
2 and periodic points of annulus homeomorphisms
-
2 and periodic points of annulus homeomorphisms, Invent. Mat. 108 (1992), 402-418.
-
(1992)
Invent. Mat.
, vol.108
, pp. 402-418
-
-
Franks, J.1
-
9
-
-
0000366176
-
On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients
-
I.M. GEL'FAND and V.B. LIDSKIǏ, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, American Math. Soc. Transl. Series 2 8.(1958), 143-181.
-
(1958)
American Math. Soc. Transl. Series 2
, vol.8
, pp. 143-181
-
-
GeL'Fand, I.M.1
Lidskiǐ, V.B.2
-
10
-
-
0002182215
-
Morse-theory for forced oscillations of asymptotically linear Hamiltonian systems
-
World Scientific
-
Y. LONG and E. ZEHNDER, Morse-theory for forced oscillations of asymptotically linear Hamiltonian systems, pp. 528-563 in 'Stochastic Processes, Physics and Geometry', World Scientific, 1990.
-
(1990)
Stochastic Processes, Physics and Geometry
, pp. 528-563
-
-
Long D, Y.1
Zehnder, E.2
-
11
-
-
65749319455
-
Sur un théorème de géométrie
-
H. POINCARÉ, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375-407.
-
(1912)
Rend. Circ. Mat. Palermo
, vol.33
, pp. 375-407
-
-
Poincaré, H.1
-
12
-
-
84990617874
-
Morse theory for periodic solutions of Hamiltonian systems and the Maslov index
-
D. SALAMON and E. ZEHNDER, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303-1360.
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, pp. 1303-1360
-
-
Salamon, D.1
Zehnder, E.2
|