메뉴 건너뛰기




Volumn 6, Issue 4, 1999, Pages 341-355

Sub-harmonics for two-dimensional Hamiltonian systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0010176509     PISSN: 10219722     EISSN: None     Source Type: Journal    
DOI: 10.1007/s000300050007     Document Type: Article
Times cited : (9)

References (12)
  • 1
    • 0002941971 scopus 로고
    • A new approach to the Morse-Conley Theory and some applications
    • V. BENCI, A new approach to the Morse-Conley Theory and some applications, Ann. Mat. Pura Appl. 158 (1991), 231-305.
    • (1991) Ann. Mat. Pura Appl. , vol.158 , pp. 231-305
    • Benci, V.1
  • 2
    • 0000778954 scopus 로고
    • Periodic solutions of asymptotically linear dynamical systems
    • V. BENCI and D. FORTUNATO, Periodic solutions of asymptotically linear dynamical systems, Nonlinear Diff. Eq. and Appl. 1 (1994), 267-280.
    • (1994) Nonlinear Diff. Eq. and Appl. , vol.1 , pp. 267-280
    • Benci, V.1    Fortunato, D.2
  • 3
    • 84968473058 scopus 로고
    • Proof of Poincaré's geometric theorem
    • G.D. BIRKHOFF, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc, 14 (1913), 14-22.
    • (1913) Trans. Amer. Math. Soc , vol.14 , pp. 14-22
    • Birkhoff, G.D.1
  • 4
    • 51249195279 scopus 로고
    • An extension of Poincaré's last geometric theorem
    • G.D. BIRKHOFF, An extension of Poincaré's last geometric theorem, Acta Math. 47 (1925), 297-311.
    • (1925) Acta Math. , vol.47 , pp. 297-311
    • Birkhoff, G.D.1
  • 5
    • 0002734536 scopus 로고
    • Proof of the Poincaré-Birkhoff fixed point theorem
    • M. BROWN and W.D. NEUMANN, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), 21-31.
    • (1977) Michigan Math. J. , vol.24 , pp. 21-31
    • Brown, M.1    Neumann, W.D.2
  • 6
    • 84990569659 scopus 로고
    • Morse-type index theory for flows and periodic solutions for Hamiltonian equations
    • C. CONLEY and E. ZEHNDER, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207-253.
    • (1984) Comm. Pure Appl. Math. , vol.37 , pp. 207-253
    • Conley, C.1    Zehnder, E.2
  • 8
    • 33751514484 scopus 로고
    • 2 and periodic points of annulus homeomorphisms
    • 2 and periodic points of annulus homeomorphisms, Invent. Mat. 108 (1992), 402-418.
    • (1992) Invent. Mat. , vol.108 , pp. 402-418
    • Franks, J.1
  • 9
    • 0000366176 scopus 로고
    • On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients
    • I.M. GEL'FAND and V.B. LIDSKIǏ, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, American Math. Soc. Transl. Series 2 8.(1958), 143-181.
    • (1958) American Math. Soc. Transl. Series 2 , vol.8 , pp. 143-181
    • GeL'Fand, I.M.1    Lidskiǐ, V.B.2
  • 10
    • 0002182215 scopus 로고
    • Morse-theory for forced oscillations of asymptotically linear Hamiltonian systems
    • World Scientific
    • Y. LONG and E. ZEHNDER, Morse-theory for forced oscillations of asymptotically linear Hamiltonian systems, pp. 528-563 in 'Stochastic Processes, Physics and Geometry', World Scientific, 1990.
    • (1990) Stochastic Processes, Physics and Geometry , pp. 528-563
    • Long D, Y.1    Zehnder, E.2
  • 11
    • 65749319455 scopus 로고
    • Sur un théorème de géométrie
    • H. POINCARÉ, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375-407.
    • (1912) Rend. Circ. Mat. Palermo , vol.33 , pp. 375-407
    • Poincaré, H.1
  • 12
    • 84990617874 scopus 로고
    • Morse theory for periodic solutions of Hamiltonian systems and the Maslov index
    • D. SALAMON and E. ZEHNDER, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303-1360.
    • (1992) Comm. Pure Appl. Math. , vol.45 , pp. 1303-1360
    • Salamon, D.1    Zehnder, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.