-
1
-
-
0009325332
-
Some problems associated with random velocity
-
Bartlett M. Some problems associated with random velocity. Publ. Inst. Statist. Paris. 6:1957;261-270.
-
(1957)
Publ. Inst. Statist. Paris
, vol.6
, pp. 261-270
-
-
Bartlett, M.1
-
2
-
-
0009366255
-
A note on random walks at constant speed
-
Bartlett M. A note on random walks at constant speed. Adv. Appl. Probab. 10:1978;704-707.
-
(1978)
Adv. Appl. Probab.
, vol.10
, pp. 704-707
-
-
Bartlett, M.1
-
3
-
-
0003520765
-
-
Mir, Moscow (Russian translation).
-
Bers, L., John, F., Schechter, M., 1966. Partial Differential Equations. Mir, Moscow (Russian translation).
-
(1966)
Partial Differential Equations
-
-
Bers, L.1
John, F.2
Schechter, M.3
-
4
-
-
0009391411
-
Random walks and physical processes
-
Cane V. Random walks and physical processes. Bull. Int. Statist. Inst. 42:1967;622-640.
-
(1967)
Bull. Int. Statist. Inst.
, vol.42
, pp. 622-640
-
-
Cane, V.1
-
5
-
-
0009364456
-
Diffusion models with relativity effects
-
In: Gani, J. (Ed.), Applied Probability Trust, Sheffield
-
Cane, V., 1975. Diffusion models with relativity effects. In: Gani, J. (Ed.), Perspectives in Probability and Statistics. Applied Probability Trust, Sheffield, pp. 263-273.
-
(1975)
Perspectives in Probability and Statistics
, pp. 263-273
-
-
Cane, V.1
-
6
-
-
0000651655
-
First-passage time, maximum displacement, and Kac's solution of the telegraph equation
-
Foong, S.K., 1992. First-passage time, maximum displacement, and Kac's solution of the telegraph equation. Phys. Rev. 46 (2), 707-710.
-
(1992)
Phys. Rev.
, vol.46
, Issue.2
, pp. 707-710
-
-
Foong, S.K.1
-
7
-
-
0001744504
-
Properties of the telegrapher's random process with or without a trap
-
Foong S.K., Kanno S. Properties of the telegrapher's random process with or without a trap. Stochastic Process. Appl. 53:1994;147-173.
-
(1994)
Stochastic Process. Appl.
, vol.53
, pp. 147-173
-
-
Foong, S.K.1
Kanno, S.2
-
8
-
-
0001229778
-
On diffusion by discontinuous movements and the telegraph equation
-
Goldstein S. On diffusion by discontinuous movements and the telegraph equation. Quart. J. Mech. Appl. Math. 4:1951;129-156.
-
(1951)
Quart. J. Mech. Appl. Math.
, vol.4
, pp. 129-156
-
-
Goldstein, S.1
-
9
-
-
84968512345
-
An invariance principle for a class of d -dimensional polygonal random functions
-
Gorostiza L. An invariance principle for a class of. d -dimensional polygonal random functions Trans. Amer. Math. Soc. 177:1973;413-445.
-
(1973)
Trans. Amer. Math. Soc.
, vol.177
, pp. 413-445
-
-
Gorostiza, L.1
-
10
-
-
0003179709
-
Theory of random evolutions with applications to partial differential equations
-
Griego R., Hersh R. Theory of random evolutions with applications to partial differential equations. Trans. Amer. Math. Soc. 156:1971;405-418.
-
(1971)
Trans. Amer. Math. Soc.
, vol.156
, pp. 405-418
-
-
Griego, R.1
Hersh, R.2
-
12
-
-
0000298952
-
Random evolutions: A survey of results and problems
-
Hersh, R., 1974. Random evolutions: a survey of results and problems. Rocky Mount. J. Math. 4, 443-477.
-
(1974)
Rocky Mount. J. Math.
, vol.4
, pp. 443-477
-
-
Hersh, R.1
-
13
-
-
84980139567
-
Random evolutions are asymptotically Gaussian
-
Hersh R., Pinsky M. Random evolutions are asymptotically Gaussian. Comm. Pure Appl. Math. 25:1972;33-44.
-
(1972)
Comm. Pure Appl. Math.
, vol.25
, pp. 33-44
-
-
Hersh, R.1
Pinsky, M.2
-
14
-
-
0039638946
-
The distance between the Kac process and the Wiener process with applications to generalized telegraph equations
-
Janssen A. The distance between the Kac process and the Wiener process with applications to generalized telegraph equations. J. Theor. Probab. 3:1990;349-360.
-
(1990)
J. Theor. Probab.
, vol.3
, pp. 349-360
-
-
Janssen, A.1
-
15
-
-
0041110015
-
On the probabilistic representation of a solution of the telegraph equation
-
(in Russian).
-
Kabanov, Yu.M., 1992. On the probabilistic representation of a solution of the telegraph equation. Theor. Probab. Appl. 37, 425-426 (in Russian).
-
(1992)
Theor. Probab. Appl.
, vol.37
, pp. 425-426
-
-
Kabanov, Yu.M.1
-
17
-
-
84858771454
-
A stochastic model related to the telegrapher's equation
-
Kac M. A stochastic model related to the telegrapher's equation. Rocky Mount. J. Math. 4:1974;497-509.
-
(1974)
Rocky Mount. J. Math.
, vol.4
, pp. 497-509
-
-
Kac, M.1
-
18
-
-
0009317966
-
Differential equations in which the Poisson process plays a role
-
Kaplan S. Differential equations in which the Poisson process plays a role. Bull. Amer. Math. Soc. 70:1964;264-268.
-
(1964)
Bull. Amer. Math. Soc.
, vol.70
, pp. 264-268
-
-
Kaplan, S.1
-
20
-
-
85033894285
-
The equations of Markovian random evolutions
-
Doctoral Dissertation, Kiev, (in Russian).
-
Kolesnik, A.D., 1991. The equations of Markovian random evolutions. Doctoral Dissertation, Inst. Math. Ukrain. Acad. Sci., Kiev, p. 130 (in Russian).
-
(1991)
Inst. Math. Ukrain. Acad. Sci.
, pp. 130
-
-
Kolesnik, A.D.1
-
21
-
-
0032373692
-
The equations of Markovian random evolutions in a line
-
to appear.
-
Kolesnik, A.D., 1998. The equations of Markovian random evolutions in a line. J. Appl. Probab. 35 (1), to appear.
-
(1998)
J. Appl. Probab.
, vol.35
, Issue.1
-
-
Kolesnik, A.D.1
-
26
-
-
0009391412
-
Hyperbolic equations arising in random models
-
Orsingher E. Hyperbolic equations arising in random models. Stochastic Process. Appl. 21:1985;93-106.
-
(1985)
Stochastic Process. Appl.
, vol.21
, pp. 93-106
-
-
Orsingher, E.1
-
27
-
-
0022724841
-
A planar random motion governed by the two-dimensional telegraph equation
-
Orsingher E. A planar random motion governed by the two-dimensional telegraph equation. J. Appl. Probab. 23:1986;385-397.
-
(1986)
J. Appl. Probab.
, vol.23
, pp. 385-397
-
-
Orsingher, E.1
-
28
-
-
0039638943
-
Stochastic motions on the 3-sphere governed by wave and heat equations
-
Orsingher E. Stochastic motions on the 3-sphere governed by wave and heat equations. J. Appl. Probab. 24:1987;315-327.
-
(1987)
J. Appl. Probab.
, vol.24
, pp. 315-327
-
-
Orsingher, E.1
-
29
-
-
45149137464
-
Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws
-
Orsingher E. Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws. Stochastic. Process. Appl. 34:1990;49-66.
-
(1990)
Stochastic. Process. Appl.
, vol.34
, pp. 49-66
-
-
Orsingher, E.1
-
30
-
-
0002777997
-
Random motions governed by third-order equations
-
Orsingher E. Random motions governed by third-order equations. Adv. Appl. Probab. 22:1990;915-928.
-
(1990)
Adv. Appl. Probab.
, vol.22
, pp. 915-928
-
-
Orsingher, E.1
-
31
-
-
0000567512
-
On a 2n -valued telegraph signal and the related integrated process
-
Orsingher E., Bassan B. On a. 2n -valued telegraph signal and the related integrated process Stochastics and Stochastics Rep. 38:1992;159-173.
-
(1992)
Stochastics and Stochastics Rep.
, vol.38
, pp. 159-173
-
-
Orsingher, E.1
Bassan, B.2
-
32
-
-
0040825452
-
The explicit probability law of a planar random motion governed by a fouth order hyperbolic equation
-
(in Russian).
-
Orsingher, E., Kolesnik, A.D., 1996. The explicit probability law of a planar random motion governed by a fouth order hyperbolic equation. Theor. Probab. Appl. 41, 451-459 (in Russian).
-
(1996)
Theor. Probab. Appl.
, vol.41
, pp. 451-459
-
-
Orsingher, E.1
Kolesnik, A.D.2
-
33
-
-
0038585922
-
Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain
-
Pinsky M. Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain. Zeit. Wahr. 9:1968;101-111.
-
(1968)
Zeit. Wahr.
, vol.9
, pp. 101-111
-
-
Pinsky, M.1
|