메뉴 건너뛰기




Volumn 2001, Issue 23, 2001, Pages 1243-1264

Quantum Periods, I: Semi-Infinite Variations of Hodge Structures

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0009916976     PISSN: 10737928     EISSN: None     Source Type: Journal    
DOI: 10.1155/S1073792801000599     Document Type: Article
Times cited : (75)

References (9)
  • 2
    • 0347174537 scopus 로고    scopus 로고
    • [B2], in preparation
    • [B2] _, Quantum periods, II, in preparation.
    • Quantum Periods , vol.2
  • 4
    • 85014454865 scopus 로고    scopus 로고
    • Frobenius manifolds and formality of Lie algebras of polyvector fields
    • [BK]
    • [BK] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices 1998, 201-215.
    • (1998) Internat. Math. Res. Notices , pp. 201-215
    • Barannikov, S.1    Kontsevich, M.2
  • 5
    • 0002925364 scopus 로고
    • A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory
    • [COGP]
    • [COGP] P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nuclear Physics B 359 (1991), 21-74.
    • (1991) Nuclear Physics B , vol.359 , pp. 21-74
    • Candelas, P.1    De La Ossa, X.C.2    Green, P.S.3    Parkes, L.4
  • 6
    • 1842588046 scopus 로고    scopus 로고
    • Equivariant Gromov-Witten invariants
    • [G]
    • [G] A. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 1996, 613-663.
    • (1996) Internat. Math. Res. Notices , pp. 613-663
    • Givental, A.1
  • 9
    • 34249763252 scopus 로고
    • Gromov-Witten classes, quantum cohomology, and enumerative geometry
    • [KM]
    • [KM] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562.
    • (1994) Comm. Math. Phys. , vol.164 , pp. 525-562
    • Kontsevich, M.1    Manin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.