-
1
-
-
0030533361
-
Lévy-Gromov's isoperimetric inequality for infinite dimensional diffusion generator
-
Bakry D., Ledoux M. Lévy-Gromov's isoperimetric inequality for infinite dimensional diffusion generator. Invent. Math. 123:1996;259-281.
-
(1996)
Invent. Math.
, vol.123
, pp. 259-281
-
-
Bakry, D.1
Ledoux, M.2
-
2
-
-
84950745986
-
Le Spectre d'une variété Riemannienne.
-
Springer, New York.
-
Berg, M., Gauduchon, P., Mazet, E., 1971. Le Spectre d'une variété Riemannienne. Lecture Notes in Math. vol. 194. Springer, New York.
-
(1971)
Lecture Notes in Math.
, vol.194
-
-
Berg, M.1
Gauduchon, P.2
Mazet, E.3
-
5
-
-
0000424558
-
Grandient estimates on manifolds using coupling
-
Cranston M. Grandient estimates on manifolds using coupling. J. Funct. Anal. 99:1991;110-124.
-
(1991)
J. Funct. Anal.
, vol.99
, pp. 110-124
-
-
Cranston, M.1
-
7
-
-
0000031706
-
Formulae for the derivatives of heat semigroups
-
Elworthy K.D., Li X.M. Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125:1994;252-286.
-
(1994)
J. Funct. Anal.
, vol.125
, pp. 252-286
-
-
Elworthy, K.D.1
Li, X.M.2
-
9
-
-
0000418027
-
The radial part of Brownian motion on a manifold: A semi-martingale property.
-
Kendall, W.S., 1987. The radial part of Brownian motion on a manifold: a semi-martingale property. Ann. Probab. 15, 1491-1500.
-
(1987)
Ann. Probab.
, vol.15
, pp. 1491-1500
-
-
Kendall, W.S.1
-
10
-
-
0000301552
-
Nonnegative Ricci curvature and the Brownian coupling property
-
Kendall W.S. Nonnegative Ricci curvature and the Brownian coupling property, Stochastics. 19:1986;111-129.
-
(1986)
Stochastics.
, vol.19
, pp. 111-129
-
-
Kendall, W.S.1
-
11
-
-
0000324115
-
On the parabolic heat kernel of the Schrödinger operator
-
Li P., Yau S.T. On the parabolic heat kernel of the Schrödinger operator. Acta. Math. 156:1986;153-201.
-
(1986)
Acta. Math.
, vol.156
, pp. 153-201
-
-
Li, P.1
Yau, S.T.2
-
12
-
-
0039355447
-
Gradient estimates and heat kernel estimates.
-
Qian, Z., 1995. Gradient estimates and heat kernel estimates. Proc. Roy. Soc. Edinburgh, 125A, 975-990.
-
(1995)
Proc. Roy. Soc. Edinburgh
, vol.125 A
, pp. 975-990
-
-
Qian, Z.1
-
13
-
-
0005523249
-
Gaussian estimates for the heat kernel of the weighted Laplacian and fractal measures
-
Setti A.G. Gaussian estimates for the heat kernel of the weighted Laplacian and fractal measures. Canad. J. Math. 44:1992;1061-1078.
-
(1992)
Canad. J. Math.
, vol.44
, pp. 1061-1078
-
-
Setti, A.G.1
-
14
-
-
0000189968
-
Some estimates of the transition density of a nondegenerate diffusion Markov process
-
Sheu S.J. Some estimates of the transition density of a nondegenerate diffusion Markov process. Ann. Probab. 19:1991;538-561.
-
(1991)
Ann. Probab.
, vol.19
, pp. 538-561
-
-
Sheu, S.J.1
-
15
-
-
0001214262
-
An estimate of the gap of the first two eigenvalues in the Schrödinger operator
-
Singer M., Wong B., Yau S.T., Yau S.S.T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Ann. Scuola Norm. Sup. Pisa. ser. IV, 12(2):1985;319-333.
-
(1985)
Ann. Scuola Norm. Sup. Pisa. Ser. IV
, vol.12
, Issue.2
, pp. 319-333
-
-
Singer, M.1
Wong, B.2
Yau, S.T.3
Yau, S.S.T.4
-
17
-
-
0040571865
-
Gradient estimates for harmonic functions on regular domains in Riemannian manifolds
-
to appear.
-
Thalmaier, A., Wang, F.Y., 1996. Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal., to appear.
-
(1996)
J. Funct. Anal.
-
-
Thalmaier, A.1
Wang, F.Y.2
-
18
-
-
21844523092
-
Estimates of the first Dirichlet eigenvalue by using diffusion processes
-
Wang F.Y. Estimates of the first Dirichlet eigenvalue by using diffusion processes. Probab. Theory Relat. Fields. 101:1995;363-369.
-
(1995)
Probab. Theory Relat. Fields
, vol.101
, pp. 363-369
-
-
Wang, F.Y.1
-
19
-
-
0039938081
-
Logarithmic Sobolev inequalities for diffusion processes with application to path space
-
Wang F.Y. Logarithmic Sobolev inequalities for diffusion processes with application to path space. Chinese J. Appl. Probab. Stat. 12(3):1996;255-264.
-
(1996)
Chinese J. Appl. Probab. Stat.
, vol.12
, Issue.3
, pp. 255-264
-
-
Wang, F.Y.1
-
20
-
-
0039979024
-
Sharp explicit lower bounds of heat kernels.
-
to appear.
-
Wang, F.Y. 1996. Sharp explicit lower bounds of heat kernels. Ann. Probab., to appear.
-
(1996)
Ann. Probab.
-
-
Wang, F.Y.1
-
21
-
-
0010788189
-
Harnack inequality for non-self-adjoint evolution equations
-
Yau S.T. Harnack inequality for non-self-adjoint evolution equations. Math. Research Letters. 2:1995;387-399.
-
(1995)
Math. Research Letters
, vol.2
, pp. 387-399
-
-
Yau, S.T.1
|