메뉴 건너뛰기




Volumn 58, Issue 3, 1998, Pages 3458-3468

Stochastic geometry of polygonal networks: An alternative approach to the hexagon-square transition in bénard convection

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0009831078     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.58.3458     Document Type: Article
Times cited : (10)

References (49)
  • 7
    • 0004231024 scopus 로고
    • American Society for Metals, Cleveland, OH
    • C. S. Smith, Metal Interfaces (American Society for Metals, Cleveland, OH, 1952), p. 65.
    • (1952) Metal Interfaces , pp. 65
    • Smith, C.S.1
  • 42
    • 85036413637 scopus 로고    scopus 로고
    • The derivative [Formula Presented] is zero if the number of hexagons equals the number of squares or [Formula Presented] has an extremal value
    • The derivative ∂μ2/∂ɛ=4 p5 ∂(p4/p5)/∂ɛ (p6-p4) is zero if the number of hexagons equals the number of squares or (p4/p5) has an extremal value.
  • 44
    • 85036246761 scopus 로고    scopus 로고
    • The pentagons in the lines separating square and hexagon patches have one square, two pentagons and two hexagons as neighbors. Thus, [Formula Presented]
    • The pentagons in the lines separating square and hexagon patches have one square, two pentagons and two hexagons as neighbors. Thus, m(5)=(1×4+2×5+2×6)/5.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.