-
1
-
-
0003199706
-
Every planar map is four colorable
-
Appel, K., Haken, W.: Every planar map is four colorable. Contemp. Math. 98 (1989)
-
(1989)
Contemp. Math.
, vol.98
-
-
Appel, K.1
Haken, W.2
-
2
-
-
0002178411
-
Solution of the Ringel problem on vertex-face coloring of planar graphs and coloring of 1-planar graphs
-
Borodin, O.V.: Solution of the Ringel problem on vertex-face coloring of planar graphs and coloring of 1-planar graphs (in Russian). Metody Diskret. Analiz. 41, 12-26 (1984)
-
(1984)
Metody Diskret. Analiz.
, vol.41
, pp. 12-26
-
-
Borodin, O.V.1
-
3
-
-
84986492551
-
Diagonal 11-coloring of plane triangulations
-
Borodin, O.V.: Diagonal 11-coloring of plane triangulations. J. Graph Theory 14, 701-704 (1990)
-
(1990)
J. Graph Theory
, vol.14
, pp. 701-704
-
-
Borodin, O.V.1
-
4
-
-
38249012792
-
Cyclic coloring of plane graphs
-
Borodin, O.V.: Cyclic coloring of plane graphs. Discrete Math. 100, 281-289 (1992)
-
(1992)
Discrete Math.
, vol.100
, pp. 281-289
-
-
Borodin, O.V.1
-
5
-
-
38249013058
-
Diagonal coloring of the vertices of triangulations
-
Borodin, O.V.: Diagonal coloring of the vertices of triangulations. Discrete Math. 102, 95-96 (1992)
-
(1992)
Discrete Math.
, vol.102
, pp. 95-96
-
-
Borodin, O.V.1
-
6
-
-
84987472551
-
A new proof of the 6 color theorem
-
Borodin, O.V.: A new proof of the 6 color theorem. J. Graph Theory 19, 507-521 (1995)
-
(1995)
J. Graph Theory
, vol.19
, pp. 507-521
-
-
Borodin, O.V.1
-
8
-
-
0040341771
-
On a special face colouring of cubic graphs
-
Bouchet, A., Fouquet, J.-L., Jolivet, J.-L., Riviere, M.: On a special face colouring of cubic graphs. Ars Combin. 24, 67-76 (1987)
-
(1987)
Ars Combin.
, vol.24
, pp. 67-76
-
-
Bouchet, A.1
Fouquet, J.-L.2
Jolivet, J.-L.3
Riviere, M.4
-
9
-
-
84987491544
-
On some properties of 4-regular plane graphs
-
Horňák, M., Jendrol', S.: On some properties of 4-regular plane graphs. J. Graph Theory 20, 163-175 (1995)
-
(1995)
J. Graph Theory
, vol.20
, pp. 163-175
-
-
Horňák, M.1
Jendrol, S.2
-
10
-
-
0009763579
-
On the d-distance face chromatic number of plane graphs
-
Horňák, M., Jendrol', S.: On the d-distance face chromatic number of plane graphs. Discrete Math. 164, 171-174 (1997)
-
(1997)
Discrete Math.
, vol.164
, pp. 171-174
-
-
Horňák, M.1
Jendrol, S.2
-
11
-
-
19444378894
-
Problem 2.15. Nine-color conjecture
-
New York: John Wiley & Sons
-
Jensen, T.R., Toft, B.: Problem 2.15. Nine-color conjecture. In: Graph coloring problems (p. 48) New York: John Wiley & Sons 1995
-
(1995)
Graph Coloring Problems
, pp. 48
-
-
Jensen, T.R.1
Toft, B.2
-
12
-
-
0003159487
-
Cyclic coloration of plane graphs
-
W.T. Tutte: Recent progress in combinatorics May Academic Press
-
Ore, O., Plummer, M.D.: Cyclic coloration of plane graphs. In: W.T. Tutte: Recent progress in combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics, May 1968, pp. 287-293) Academic Press 1969
-
(1968)
Proceedings of the Third Waterloo Conference on Combinatorics
, pp. 287-293
-
-
Ore, O.1
Plummer, M.D.2
-
13
-
-
84986466990
-
Cyclic coloration of 3-polytopes
-
Plummer, M.D., Toft, B.: Cyclic coloration of 3-polytopes. J. Graph Theory 11, 507-515 (1987)
-
(1987)
J. Graph Theory
, vol.11
, pp. 507-515
-
-
Plummer, M.D.1
Toft, B.2
-
14
-
-
0031146074
-
The Four-Colour Theorem
-
Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The Four-Colour Theorem. J. Combin. Theory Ser. B 70, 2-44 (1997)
-
(1997)
J. Combin. Theory Ser. B
, vol.70
, pp. 2-44
-
-
Robertson, N.1
Sanders, D.P.2
Seymour, P.D.3
Thomas, R.4
-
15
-
-
84987589553
-
On diagonally 10-coloring plane triangulations
-
Sanders, D.P., Zhao, Y.: On diagonally 10-coloring plane triangulations. J. Graph Theory 20, 77-85 (1995)
-
(1995)
J. Graph Theory
, vol.20
, pp. 77-85
-
-
Sanders, D.P.1
Zhao, Y.2
|