-
2
-
-
0031561077
-
-
LANGD5
-
P. Sakya, J. M. Seddon, R. H. Templer, R. J. Mirkin, and G. J. T. Tiddy, Langmuir 13, 3706 (1997); LANGD5
-
(1997)
Langmuir
, vol.13
, pp. 3706
-
-
Sakya, P.1
Seddon, J.M.2
Templer, R.H.3
Mirkin, R.J.4
Tiddy, G.J.T.5
-
3
-
-
0000841766
-
-
A. Gulik, H. Delacroix, G. Kirschner, and V. Luzzati, J. Phys. II 5, 445 (1995);
-
(1995)
J. Phys. II
, vol.5
, pp. 445
-
-
Gulik, A.1
Delacroix, H.2
Kirschner, G.3
Luzzati, V.4
-
8
-
-
0000329220
-
-
D. C. Turner, Z.-G. Wang, S. M. Gruner, D. A. Mannock, and R. N. McElhaney, J. Phys. II 2, 2039 (1992).
-
(1992)
J. Phys. II
, vol.2
, pp. 2039
-
-
Turner, D.C.1
Wang, Z.-G.2
Gruner, S.M.3
Mannock, D.A.4
McElhaney, R.N.5
-
9
-
-
0001477596
-
-
H. Hasegawa, H. Tanaka, K. Yamasaki, and T. Hashimoto, Macromolecules 20, 1651 (1987).
-
(1987)
Macromolecules
, vol.20
, pp. 1651
-
-
Hasegawa, H.1
Tanaka, H.2
Yamasaki, K.3
Hashimoto, T.4
-
15
-
-
0000333087
-
-
G. Porte, J. Appell, P. Bassereau, J. Marignan, M. Skouri, I. Billard, and M. Delsanti, Physica A 176, 168 (1991).
-
(1991)
Physica A
, vol.176
, pp. 168
-
-
Porte, G.1
Appell, J.2
Bassereau, P.3
Marignan, J.4
Skouri, M.5
Billard, I.6
Delsanti, M.7
-
16
-
-
0011427350
-
-
edited by W. M. Gelbart, A. Ben-Shaul, D. Roux, Springer-Verlag, New York
-
G. Porte, in Micelles, Membranes, Microemulsions, and Monolayers, edited by W. M. Gelbart, A. Ben-Shaul, and D. Roux (Springer-Verlag, New York, 1994), p. 105.
-
(1994)
Micelles, Membranes, Microemulsions, and Monolayers
, pp. 105
-
-
Porte, G.1
-
17
-
-
0003911843
-
-
(Ref. 9
-
D. Roux, C. R. Safinya, and F. Nallet, in Micelles, Membranes, Microemulsions, and Monolayers (Ref. 9), p. 303.
-
Micelles, Membranes, Microemulsions, and Monolayers
, pp. 303
-
-
Roux, D.1
Safinya, C.R.2
Nallet, F.3
-
24
-
-
25544457090
-
-
M. Laradji, H. Guo, M. Grant, and M. Zuckermann, Phys. Rev. A 44, 8184 (1991);
-
(1991)
Phys. Rev. A
, vol.44
, pp. 8184
-
-
Laradji, M.1
Guo, H.2
Grant, M.3
Zuckermann, M.4
-
31
-
-
85035233396
-
-
Although there are many possible arrangements of the [formula presented] phase, the most energetically favorable is a simple cubic arrangement with a surfactant concentration of 13/32.
-
Although there are many possible arrangements of the Q″ phase, the most energetically favorable is a simple cubic arrangement with a surfactant concentration of 13/32.
-
-
-
-
34
-
-
85045534465
-
-
Pis’ma Zh. Éksp. Teor. Fiz. 64, 575 (1996) [ JTPLA2
-
V. L. Golo, E. I. Kats, and G. Porte, Pis’ma Zh. Éksp. Teor. Fiz. 64, 575 (1996) [ JETP Lett. 64, 630 (1996)].JTPLA2
-
(1996)
JETP Lett.
, vol.64
, pp. 630
-
-
Golo, V.L.1
Kats, E.I.2
Porte, G.3
-
38
-
-
0027339354
-
-
V. Luzzati, R. Vargas, P. Mariani, A. Gulik, and H. Delacroix, J. Mol. Biol. 229, 540 (1993);
-
(1993)
J. Mol. Biol.
, vol.229
, pp. 540
-
-
Luzzati, V.1
Vargas, R.2
Mariani, P.3
Gulik, A.4
Delacroix, H.5
-
41
-
-
85035219922
-
-
In the notation employed by Wells, an [formula presented] net meets [formula presented] at a vertex, and has a shortest circuit of [formula presented] links. Seven (10,3) nets were studied by Wells, who indexed them by the letters [formula presented] to [formula presented]. The (10,3)-[formula presented] net is 3-connected, and has all links of equal length, with all interbond angles of [formula presented]
-
In the notation employed by Wells, an (n,p) net meets p×p at a vertex, and has a shortest circuit of n links. Seven (10,3) nets were studied by Wells, who indexed them by the letters a to g. The (10,3)-a net is 3-connected, and has all links of equal length, with all interbond angles of 120°.
-
-
-
-
45
-
-
85035206014
-
-
The gyroid phase is unique among the known minimal surfaces. Most known minimal surfaces are spanned by linear nets which consist of twofold rotational axes embedded in the surfaces. The gyroid surface does not have a twofold rotational axis, and thus cannot be spanned by a linear net. Furthermore, the two labyrinths of most minimal surfaces are congruent, whereas in the gyroid surface they are oppositely congruent.
-
The gyroid phase is unique among the known minimal surfaces. Most known minimal surfaces are spanned by linear nets which consist of twofold rotational axes embedded in the surfaces. The gyroid surface does not have a twofold rotational axis, and thus cannot be spanned by a linear net. Furthermore, the two labyrinths of most minimal surfaces are congruent, whereas in the gyroid surface they are oppositely congruent.
-
-
-
|