메뉴 건너뛰기




Volumn 26, Issue 3, 1997, Pages 751-763

Bounds on the number of examples needed for learning functions

Author keywords

Function learning; Sample complexity

Indexed keywords


EID: 0009625881     PISSN: 00975397     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0097539793259185     Document Type: Article
Times cited : (19)

References (14)
  • 2
  • 4
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • A. EHRENFEUCHT, D. HAUSSLER, M. KEARNS, AND L. VALIANT, A general lower bound on the number of examples needed for learning, Inform. and Comput., 82 (1989), pp. 247-261.
    • (1989) Inform. and Comput. , vol.82 , pp. 247-261
    • Ehrenfeucht, A.1    Haussler, D.2    Kearns, M.3    Valiant, L.4
  • 5
    • 0024766393 scopus 로고
    • Generalizing the pac model: Sample size bounds from metric-dimension based uniform convergence results
    • IEEE Computer Society Press, Los Alamitos, CA
    • D. HAUSSLER, Generalizing the pac model: Sample size bounds from metric-dimension based uniform convergence results, in Proc. 30th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 40-46.
    • (1989) Proc. 30th Annual Symposium on the Foundations of Computer Science , pp. 40-46
    • Haussler, D.1
  • 6
    • 0025794545 scopus 로고
    • Efficient distribution-free learning of probabilistic concepts
    • IEEE Computer Society Press, Los Alamitos, CA
    • M. J. KEARNS AND R. E. SCHAPIRE, Efficient distribution-free learning of probabilistic concepts, in Proc. 31st Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 382-392; full version, J. Comput. System Sci., 48 (1994), pp. 464-497.
    • (1990) Proc. 31st Annual Symposium on the Foundations of Computer Science , pp. 382-392
    • Kearns, M.J.1    Schapire, R.E.2
  • 7
    • 0028460231 scopus 로고
    • full version
    • M. J. KEARNS AND R. E. SCHAPIRE, Efficient distribution-free learning of probabilistic concepts, in Proc. 31st Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 382-392; full version, J. Comput. System Sci., 48 (1994), pp. 464-497.
    • (1994) J. Comput. System Sci. , vol.48 , pp. 464-497
  • 10
    • 0000378526 scopus 로고
    • On learning sets and functions
    • B. K. NATARAJAN, On learning sets and functions, Mach. Learning, 4 (1989), pp. 67-97.
    • (1989) Mach. Learning , vol.4 , pp. 67-97
    • Natarajan, B.K.1
  • 11
    • 38249005514 scopus 로고
    • Bounding sample size with the Vapnik-Chervonenkis dimension
    • J. SHAWE-TAYLOR, M. ANTHONY, AND N. BIGGS, Bounding sample size with the Vapnik-Chervonenkis dimension, Discrete Appl. Math., 41 (1993), pp. 65-73.
    • (1993) Discrete Appl. Math. , vol.41 , pp. 65-73
    • Shawe-Taylor, J.1    Anthony, M.2    Biggs, N.3
  • 12
    • 0027808303 scopus 로고
    • General bounds on the number of examples needed for learning probabilistic concepts
    • ACM, New York
    • H. U. SIMON, General bounds on the number of examples needed for learning probabilistic concepts, in Proc. 6th Annual Workshop on Computational Learning Theory, ACM, New York, 1993, pp. 402-412; J. Comput. System Sci., 52 (1996), pp. 239-255.
    • (1993) Proc. 6th Annual Workshop on Computational Learning Theory , pp. 402-412
    • Simon, H.U.1
  • 13
    • 0030128944 scopus 로고    scopus 로고
    • H. U. SIMON, General bounds on the number of examples needed for learning probabilistic concepts, in Proc. 6th Annual Workshop on Computational Learning Theory, ACM, New York, 1993, pp. 402-412; J. Comput. System Sci., 52 (1996), pp. 239-255.
    • (1996) J. Comput. System Sci. , vol.52 , pp. 239-255
  • 14
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. VALIANT, A theory of the learnable, Comm. Assoc. Comput. Mach., 27 (1984), pp. 1134-1142.
    • (1984) Comm. Assoc. Comput. Mach. , vol.27 , pp. 1134-1142
    • Valiant, L.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.