메뉴 건너뛰기




Volumn 45, Issue 2, 1975, Pages 99-114

Bounds in the Yukawa2 quantum field theory: Upper bound on the pressure, Hamiltonian bound and linear lower bound

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0009465114     PISSN: 00103616     EISSN: 14320916     Source Type: Journal    
DOI: 10.1007/BF01629241     Document Type: Article
Times cited : (72)

References (22)
  • 1
    • 84931996644 scopus 로고    scopus 로고
    • Brydges, D.: Boundedness below for fermion model theories. II. The linear lower bound. Univ. of Michigan preprint
  • 3
    • 84931996637 scopus 로고    scopus 로고
    • Fröhlich, J.: Preprint in preparation on the (cosφ)2 model
  • 9
    • 84931996636 scopus 로고    scopus 로고
    • Gohberg, I. C., Krein, M. G.: Introduction to the theory of linear non-selfadjoint operators. Translations of Math. Monographs, Vol. 18. Am. Math. Soc. 1969
  • 14
    • 84931996635 scopus 로고    scopus 로고
    • McBryan, O.: Finite mass renormalizations in the Euclidean Yukawa2 field theory. Commun. math. Phys. (to appear)
  • 15
    • 84931996641 scopus 로고    scopus 로고
    • McBryan, O.: Volume dependence of Schwinger functions in the Yukawa2 quantum field theory. Commun. math. Phys. (to appear)
  • 16
    • 84931996640 scopus 로고    scopus 로고
    • Nelson, E.: Quantum fields and Markoff fields. In: Spencer, D. (Ed.): Partial differential equations, pp. 413–420. Symp. Pure Math., Vol. 23, A. M. S., 1973
  • 18
    • 0012806436 scopus 로고
    • Yukawa quantum field theory in two space-time dimensions without cutoffs
    • (1972) Ann. Phys. , vol.70 , pp. 412-457
    • Schrader, R.1
  • 19
    • 0001627547 scopus 로고
    • Schwinger functions for the Yukawa model in two dimensions with space-time cutoff
    • (1975) Commun. math. Phys. , vol.42 , pp. 163-182
    • Seiler, E.1
  • 20
    • 84931996639 scopus 로고    scopus 로고
    • Seiler, E., Simon, B.: On finite mass renormalizations in the two-dimensional Yukawa model. J. Math. Phys. (to appear)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.