메뉴 건너뛰기




Volumn 61, Issue 1, 2000, Pages 136021-1360210

Temperature-induced resonances and Landau damping of collective modes in Bose-Einstein condensed gases in spherical traps

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0009311369     PISSN: 10502947     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (66)

References (35)
  • 3
  • 10
    • 51249193203 scopus 로고
    • E.P. Gross, Nuovo Cimento 20, 454 (1961); E.P. Gross, J. Math. Phys. 4, 195 (1963).
    • (1961) Nuovo Cimento , vol.20 , pp. 454
    • Gross, E.P.1
  • 11
    • 0000394530 scopus 로고
    • E.P. Gross, Nuovo Cimento 20, 454 (1961); E.P. Gross, J. Math. Phys. 4, 195 (1963).
    • (1963) J. Math. Phys. , vol.4 , pp. 195
    • Gross, E.P.1
  • 13
    • 0000196586 scopus 로고
    • L.P. Pitaevskii, Zh. Éksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)].
    • (1961) Sov. Phys. JETP , vol.13 , pp. 451
  • 25
    • 0037492159 scopus 로고
    • Beliaev decay of an elementary excitation into a pair of excitations (S.T. Beliaev, Zh. Éksp. Teor. Fiz. 7, 469 1958) [Sov. Phys. JETP 34, 322 (1958)] is not active for the lowest-energy modes in the case of the trapping potential because of the discretization of levels.
    • (1958) Zh. Éksp. Teor. Fiz. , vol.7 , pp. 469
    • Beliaev, S.T.1
  • 26
    • 33344474315 scopus 로고
    • Beliaev decay of an elementary excitation into a pair of excitations (S.T. Beliaev, Zh. Éksp. Teor. Fiz. 7, 469 1958) [Sov. Phys. JETP 34, 322 (1958)] is not active for the lowest-energy modes in the case of the trapping potential because of the discretization of levels.
    • (1958) Sov. Phys. JETP , vol.34 , pp. 322
  • 33
    • 85015749781 scopus 로고    scopus 로고
    • note
    • In this paper we do not include the so-called Popov's self-consistent correction in Eq. (1). See, for example, Ref. [27].
  • 34
    • 85015726015 scopus 로고    scopus 로고
    • note
    • We have neglected all the transitions that involve the lowest dipole mode (l=1,n=0) because in an external harmonic potential this mode, corresponding to the oscillation of the center of mass, is unaffected by the interatomic forces and then the transition probability due to interaction effects (11) must be zero [19,30]. However, the perturbation formalism we have presented in Sec. III does not take into account this physical consideration automatically and, therefore, we have omitted by hand all transitions with the dipole mode.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.