메뉴 건너뛰기




Volumn 64, Issue 3-4, 1997, Pages 277-290

Solving convex feasibility problems by a parallel projection method with geometrically-defined parameters

Author keywords

Block itera tive projection method; Convex feasibility problem; Parallel projection method; Successive approximation

Indexed keywords


EID: 0009220184     PISSN: 00036811     EISSN: 1563504X     Source Type: Journal    
DOI: 10.1080/00036819708840536     Document Type: Article
Times cited : (3)

References (8)
  • 1
    • 0000198744 scopus 로고
    • Block-iterative projection methods for parallel computation of solutions to convex feasibility problems
    • Aharoni, R., and Censor, Y., 1989. Block-iterative projection methods for parallel computation of solutions to convex feasibility problems. Lincar Algebra. Appl., 120: 165–175.
    • (1989) Lincar Algebra. Appl. , vol.120 , pp. 165-175
    • Aharoni, R.1    Censor, Y.2
  • 2
    • 5744237139 scopus 로고
    • On the behavior of a block-iterative projection method for solving convex feasibility problems
    • Butnariu, D., and Censor, Y., 1990. On the behavior of a block-iterative projection method for solving convex feasibility problems. Intern. J. Computer Math., 34: 79–94.
    • (1990) Intern. J. Computer Math. , vol.34 , pp. 79-94
    • Butnariu, D.1    Censor, Y.2
  • 3
    • 38249003154 scopus 로고
    • Weak and norm convergence of a parallel projection method in Hilbert spaces
    • Crombez, G., 1993. Weak and norm convergence of a parallel projection method in Hilbert spaces. Appl. Math. Comput., 56: 35–48.
    • (1993) Appl. Math. Comput. , vol.56 , pp. 35-48
    • Crombez, G.1
  • 4
    • 0009150796 scopus 로고
    • Viewing parallel projection methods as sequential ones in convex feasibility problems
    • Crombez, G., 1995. Viewing parallel projection methods as sequential ones in convex feasibility problems. Trans. Amer. Math. Society, 347: 2575–2583.
    • (1995) Trans. Amer. Math. Society , vol.347 , pp. 2575-2583
    • Crombez, G.1
  • 5
    • 33845708830 scopus 로고
    • The method of projections for finding the common point of convex sets
    • Gubin:, L.G., Polyak, B.T., and Raik, E.V., 1967. The method of projections for finding the common point of convex sets. USSR Comput. Math. and Math. Phys., 7: 1–24.
    • (1967) USSR Comput. Math. and Math. Phys. , vol.7 , pp. 1-24
    • Gubin, L.G.1    Polyak, B.T.2    Raik, E.V.3
  • 6
    • 34250130112 scopus 로고
    • Convergence results for an accelerated nonlinear Cimmino algorithm
    • Iusem, A.N., and De Pirro, A.R., 1986. Convergence results for an accelerated nonlinear Cimmino algorithm. Numer. Math., 49: 367–378.
    • (1986) Numer. Math. , vol.49 , pp. 367-378
    • Iusem, A.N.1    De Pirro, A.R.2
  • 7
    • 0002027588 scopus 로고
    • Restoration from phase and magnitude by generalized projections
    • Newyork: Academic Press, and
    • Levi, A., and Stark, H., 1987. “ Restoration from phase and magnitude by generalized projections ”. In In:Image Recovery: Theory and Application, 277–320. Newyork: Academic Press.
    • (1987) In:Image Recovery: Theory and Application , pp. 277-320
    • Levi, A.1    Stark, H.2
  • 8
    • 0021201713 scopus 로고
    • Decomposition through formalization in a product space
    • Pierra, G., 1984. Decomposition through formalization in a product space. Mathematical Programming, 28: 96–115.
    • (1984) Mathematical Programming , vol.28 , pp. 96-115
    • Pierra, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.