메뉴 건너뛰기




Volumn 3, Issue 4, 1996, Pages 421-444

Invariant regions for quasilinear reaction-diffusion systems and applications to a two population model

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0009035974     PISSN: 10219722     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF01193829     Document Type: Article
Times cited : (27)

References (22)
  • 1
    • 45549120045 scopus 로고
    • Dynamic Theory of Quasilinear Parabolic Equations, I. Abstract Evolution Equations
    • H. AMANN, Dynamic Theory of Quasilinear Parabolic Equations, I. Abstract Evolution Equations, Nonlinear Anal., Theory Methods Appl. 12, 895-919 (1988)
    • (1988) Nonlinear Anal., Theory Methods Appl. , vol.12 , pp. 895-919
    • Amann, H.1
  • 2
    • 84972541997 scopus 로고
    • Dynamic Theory of Quasilinear Parabolic Equations, II. Reaction-Diffusion Systems
    • H. AMANN, Dynamic Theory of Quasilinear Parabolic Equations, II. Reaction-Diffusion Systems, Differ. Integral Equations 3, 13-75 (1990)
    • (1990) Differ. Integral Equations , vol.3 , pp. 13-75
    • Amann, H.1
  • 3
    • 0001742516 scopus 로고
    • Dynamic Theory of Quasilinear Parabolic Equations, III. Global Existence
    • H. AMANN, Dynamic Theory of Quasilinear Parabolic Equations, III. Global Existence, Math. Z. 202, 219-250 (1989)
    • (1989) Math. Z. , vol.202 , pp. 219-250
    • Amann, H.1
  • 4
    • 84967768783 scopus 로고
    • Quasilinear Evolution Equations and Parabolic Systems
    • H. AMANN, Quasilinear Evolution Equations and Parabolic Systems, Trans. Amer. Math. Soc. 293, 191-227 (1986)
    • (1986) Trans. Amer. Math. Soc. , vol.293 , pp. 191-227
    • Amann, H.1
  • 5
    • 0002970101 scopus 로고
    • Global Existence for Semilinear Parabolic Systems
    • H. AMANN, Global Existence for Semilinear Parabolic Systems, J. Reine Angew. Math. 360, 47-83 (1985)
    • (1985) J. Reine Angew. Math. , vol.360 , pp. 47-83
    • Amann, H.1
  • 6
    • 0000156990 scopus 로고
    • Existence and Regularity for Semilinear Parabolic Evolution Equations
    • H. AMANN, Existence and Regularity for Semilinear Parabolic Evolution Equations, Annali Scuola Norm. Pisa Cl. Sci. (4) 11, 593-676 (1984)
    • (1984) Annali Scuola Norm. Pisa Cl. Sci. (4) , vol.11 , pp. 593-676
    • Amann, H.1
  • 8
    • 0000805398 scopus 로고
    • Positively Invariant Regions for Systems of Nonlinear Diffusion Equations
    • K.N. CHUEH, C.C. CONLEY, J.A. SMOLLER, Positively Invariant Regions for Systems of Nonlinear Diffusion Equations, Indi. Univ. Math. J. 26, 373-392 (1977)
    • (1977) Indi. Univ. Math. J. , vol.26 , pp. 373-392
    • Chueh, K.N.1    Conley, C.C.2    Smoller, J.A.3
  • 9
    • 0000329021 scopus 로고
    • An Initial-Boundary-Value Problem for a Certain Density-Dependent Diffusion System
    • P. DEURING, An Initial-Boundary-Value Problem for a Certain Density-Dependent Diffusion System, Math. Z. 194, 375-396 (1987)
    • (1987) Math. Z. , vol.194 , pp. 375-396
    • Deuring, P.1
  • 10
    • 0000297309 scopus 로고
    • Smooth Solutions to a Quasilinear System of Diffusion Equations for a Certain Population Model
    • J.U. KIM, Smooth Solutions to a Quasilinear System of Diffusion Equations for a Certain Population Model, Nonlinear Anal., Theory Methods Appl. 8, 1121-1144 (1984)
    • (1984) Nonlinear Anal., Theory Methods Appl. , vol.8 , pp. 1121-1144
    • Kim, J.U.1
  • 13
    • 84972502084 scopus 로고
    • Stationary Pattern of Some Density-Dependent Diffusion System with Competitive Dynamics
    • M. MIMURA, Stationary Pattern of Some Density-Dependent Diffusion System with Competitive Dynamics, Hiroshima Math. J. 11, 621-635 (1981)
    • (1981) Hiroshima Math. J. , vol.11 , pp. 621-635
    • Mimura, M.1
  • 14
    • 0001637925 scopus 로고
    • Global Existence of Solutions for a Strongly Coupled Quasilinear Parabolic System
    • M.A. POZIO, A. TESEI, Global Existence of Solutions for a Strongly Coupled Quasilinear Parabolic System, Nonlinear Anal., Theory Methods Appl. 14, 657-689 (1990)
    • (1990) Nonlinear Anal., Theory Methods Appl. , vol.14 , pp. 657-689
    • Pozio, M.A.1    Tesei, A.2
  • 15
    • 0004014565 scopus 로고
    • Springer Verlag, New York First published in Prentice Hall, Englewood Cliffs, New Jersey (1967)
    • M.H. PROTTER, H.F. WEINBERGER, Maximum Principles in Differential Equations. Springer Verlag, New York (1984). (First published in Prentice Hall, Englewood Cliffs, New Jersey (1967))
    • (1984) Maximum Principles in Differential Equations
    • Protter, M.H.1    Weinberger, H.F.2
  • 16
    • 0017630393 scopus 로고
    • Invariant Sets for Systems of Partial Differential Equations, I. Parabolic Equations
    • R. REDHEFFER, W. WALTER, Invariant Sets for Systems of Partial Differential Equations, I. Parabolic Equations. Arch. Rat. Mech. Anal. 67, 41-52 (1977)
    • (1977) Arch. Rat. Mech. Anal. , vol.67 , pp. 41-52
    • Redheffer, R.1    Walter, W.2
  • 17
    • 0000286193 scopus 로고
    • Invariant Sets for Strongly Coupled Reaction-Diffusions Systems under General Boundary Conditions
    • R. REDLINGER, Invariant Sets for Strongly Coupled Reaction-Diffusions Systems under General Boundary Conditions, Arch. Rat. Mech. Anal. 108, 281-291 (1989)
    • (1989) Arch. Rat. Mech. Anal. , vol.108 , pp. 281-291
    • Redlinger, R.1
  • 18
    • 85033824709 scopus 로고    scopus 로고
    • Personal Communication
    • B.J. SCHMITT, Personal Communication.
    • Schmitt, B.J.1
  • 20
    • 0008984125 scopus 로고
    • Global Solutions to a Class of Strongly Coupled Parabolic Systems
    • M. WIEGNER, Global Solutions to a Class of Strongly Coupled Parabolic Systems, Math. Ann. 292, 711-727 (1992)
    • (1992) Math. Ann. , vol.292 , pp. 711-727
    • Wiegner, M.1
  • 21
    • 38248999657 scopus 로고
    • Global Solutions to some Quasilinear Parabolic Systems in Population Dynamics
    • A. YAGI, Global Solutions to some Quasilinear Parabolic Systems in Population Dynamics, Nonlinear Anal., Theory Methods Appl. 21, 603-630 (1993)
    • (1993) Nonlinear Anal., Theory Methods Appl. , vol.21 , pp. 603-630
    • Yagi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.