메뉴 건너뛰기




Volumn 76, Issue 2, 1997, Pages 299-308

A capacity scaling algorithm for convex cost submodular flows

Author keywords

Convex optimization; Polynomial algorithm; Submodular flow

Indexed keywords


EID: 0008694731     PISSN: 00255610     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02614442     Document Type: Article
Times cited : (27)

References (11)
  • 3
    • 0001034606 scopus 로고
    • A min-max relation for submodular functions on graphs
    • J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Annals of Discrete Mathematics 1 (1977) 185-204.
    • (1977) Annals of Discrete Mathematics , vol.1 , pp. 185-204
    • Edmonds, J.1    Giles, R.2
  • 4
    • 0015330635 scopus 로고
    • Theoretical improvements in algorithmic efficiency for network flow problems
    • J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, Journal of the ACM 19 (1972) 248-264.
    • (1972) Journal of the ACM , vol.19 , pp. 248-264
    • Edmonds, J.1    Karp, R.M.2
  • 5
    • 0000100546 scopus 로고
    • Finding feasible vectors of Edmonds-Giles polyhedra
    • A. Frank, Finding feasible vectors of Edmonds-Giles polyhedra, Journal of Combinatorial Theory, Series B 36 (1984) 221-239.
    • (1984) Journal of Combinatorial Theory, Series B , vol.36 , pp. 221-239
    • Frank, A.1
  • 6
    • 34250090935 scopus 로고
    • Generalized polymatroids and submodular flows
    • A. Frank and E. Tardos, Generalized polymatroids and submodular flows, Mathematical Programming 42 (1988) 489-563.
    • (1988) Mathematical Programming , vol.42 , pp. 489-563
    • Frank, A.1    Tardos, E.2
  • 7
    • 0039810347 scopus 로고
    • Structures of polyhedra determined by submodular functions on crossing families
    • S. Fujishige, Structures of polyhedra determined by submodular functions on crossing families, Mathematical Programming 29 (1984) 125-141.
    • (1984) Mathematical Programming , vol.29 , pp. 125-141
    • Fujishige, S.1
  • 9
    • 0025496223 scopus 로고
    • Convex separable optimization is not much harder than linear optimization
    • D.S. Hochbaum and J.G. Shanthikumar, Convex separable optimization is not much harder than linear optimization, Journal of the ACM 37 (1990) 843-862.
    • (1990) Journal of the ACM , vol.37 , pp. 843-862
    • Hochbaum, D.S.1    Shanthikumar, J.G.2
  • 10
    • 0020722506 scopus 로고
    • Solving integer minimum cost flows with separable convex objective polynomially
    • M. Minoux, Solving integer minimum cost flows with separable convex objective polynomially, Mathematical Programming Study 26 (1986) 237-239.
    • (1986) Mathematical Programming Study , vol.26 , pp. 237-239
    • Minoux, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.