메뉴 건너뛰기




Volumn 28, Issue 2, 1996, Pages 384-393

Rates of convergence for random approximations of convex sets

Author keywords

Convex set; Duality; Packing numbers; Polar set; Probability inequality; Rate of convergence

Indexed keywords


EID: 0008364462     PISSN: 00018678     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0001867800048539     Document Type: Article
Times cited : (60)

References (8)
  • 1
    • 0040023867 scopus 로고
    • Intrinsic volumes and f-vectors of random polytopes
    • BARANY, I. (1989) Intrinsic volumes and f-vectors of random polytopes. Math. Ann. 285, 671-699.
    • (1989) Math. Ann. , vol.285 , pp. 671-699
    • Barany, I.1
  • 5
    • 84986685654 scopus 로고
    • Random approximation of convex sets
    • SCHNEIDER, R. (1988) Random approximation of convex sets. J. Microsc. 151, 211-227.
    • (1988) J. Microsc. , vol.151 , pp. 211-227
    • Schneider, R.1
  • 7
    • 84988103833 scopus 로고
    • Reconstructing convex bodies from random projected images
    • SMALL, C. G. (1991) Reconstructing convex bodies from random projected images. Canadian J. Statist. 19, 341-347.
    • (1991) Canadian J. Statist. , vol.19 , pp. 341-347
    • Small, C.G.1
  • 8
    • 0002326139 scopus 로고
    • Stochastic Geometry
    • B. ed. P. M. Gruber and J. M. Wills. Elsevier, Amsterdam
    • WEIL, W. AND WIEACKER, J. A. (1993) Stochastic Geometry. In Handbook of Convex Geometry, Vol. B. ed. P. M. Gruber and J. M. Wills. pp. 1391-1438. Elsevier, Amsterdam.
    • (1993) Handbook of Convex Geometry , pp. 1391-1438
    • Weil, W.1    Wieacker, J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.